我自己在某厂做了两年语音个人助理,后来自己出来创业,首先就否定了这个方向,或者它的变种(如问答系统、智能音箱、客服机器人、聊天机器人、陪伴机器人等等,各自有软件和硬件的版本),以下统称为Chatbot。
爬科技树不是一朝一夕
我估计中国过去几年,各种不同名目的对话型“机器人”的公司,从软件到硬件的,数百家是有的,也许有一千家?有一次,在一个会议上遇到一个公司,想做这个事情,想找一个“领军人物”来带,领导十多个人。我想,这个公司可能大大低估了做这个事情的难度:这种“领军人物”在中国可能不超过20个,也许只有10个?十多个人也难以做出一个工业可用的系统。就是有所谓的领军人物,有丰富经验的,想把工程重建,也不是短期可以奏效的。这个东西真的是没有捷径。
2012年随着Siri的发布,有一波中国的copycat,除了几个大厂的,大部分很快就灭了。过去一两年随着深度学习、知识图谱又起来一波。我认为其中的大部分是炒概念,超出现在的技术能达到的能力,两三年内就会群灭。
我觉得这个东西,属于典型的系统集成创新,只适合大厂战略布局用。大厂做这事,并不在乎场景的冷启动。而对创业公司,无论是技术链条长度,还是商业模式启动的困难,都是超出一般公司体量的。现在大家都想从问答、个人助理、目标达成的角度来切入。大企业玩玩可以,对小企业,想颠覆,不能走这条路,技术链太长,商业模式链更长。传统搜索肯定要被别的取代,但不能是直接拼大厂的长处这样。
往大了说,我对这一轮人工智能的几个热点应用——语音个人助手,问答系统,基于视觉的自动驾驶——都持悲观态度。我认为这种“准图灵测试”类产品,都超越了当前的盈利前沿,大规模应用是不现实的。例外是政府(特别是军方)和某些大公司不计成本地布局,瞄准十年之后。其他群众吃瓜围观就好。
各大厂推出的度秘、小冰、Cortana、Google
Now,还有搜狗、京东、腾讯等等各种产品,技术上都各有惊艳之处。未来怎么样,我也很难现在做出评价。问答系统六个层次:基础搜索、词联想、本体知识库,短程关系、长程关系、基于上下文的自由问答,现在大家也基本只做到了短程关系,长程关系以上都要靠各种“人工”。爬科技树,绝非一朝一夕。
科技树是要爬的。导弹这种大家很容易理解,每一种零件,每一种生产工具,每一种生成工具的机器,缺一种都不行。钱学森学到了导弹的一切,回中国建立这个工业也花了三十年。对于问答系统这种软件,大家可能不太容易直观理解,其实也是同样的,做一个管用的之前要攻克的小问题太多了。就是别人把全套解决方案告诉你了,你都不一定能复制出来,因为还得有一整套的工业体系在后面支撑才行。从知识提取,知识存储,知识表达,知识检索,到人机交互、知识库,不知道多少个小零件要逐一打造。所以软件产业也和其他工业一样,要老老实实爬科技树。Siri的创始人80年代就是Lisp机器的创业者。大家只关注到国防部和Siri那部分渊源(美国政府在CALO上投了1.5亿美元。Siri独立后,风投又投了2400万。苹果花了大概1.5-2.5亿美元买Siri。这个买卖真是合算),哪里想到它成立前的二十多年,它的创始人就把知识表达的坑全趟了一遍了。所以世界上没有无缘无故的成功,也没有捷径。
一些坑
机器善于做短程关系的查找(lookup),一层,罕见的情况下可以做两层。长程关系的发现(discovery)是机器做不好的,只能由人来写,最后变成规则机器执行。那些Siri里有趣的回答,都是人写的,和机器智能无关。
问答系统的现在逐渐从基于知识库的,发展到基于检索的,或者是从基于规则的,发展到基于数据的。但QA这事,至少目前,不是说数据足够多就行。特别是,数据再多,其中高质量数据(特别是结构化语义数据)有多少。实战一下就知道,靠统计机器学习来挖掘高质量数据,难度太大了,完全不实用。对问题和答案都需要NLP,其间检索和排序算法都是新的课题,需要多种方法的综合。
各种语音交互加摄像头识别产品,过去以app的形式承载,一直没有抓住用户的痛点,没有进入主流(除了被强推的siri)。所以最近两年,厂商开始试图用物理硬件来跑这些app,套个人形的塑料壳称为“机器人”。应用也逐渐细分,如儿童、恋爱、健康、娱乐等等。这些都是有益的尝试,但是还是忽悠居多。
特别是最近的一些“智能”玩具机器人(儿童机器人,陪伴机器人),基本看不懂。我买了个1000块的某某儿童对话机器人来玩,头5分钟大家都很兴奋,然后就没有然后了。关键连开关都没有,又蠢又停不下来。然后给我们COO拿回家给4岁的儿子玩,基本没法用,错得驴唇不对马嘴。强烈怀疑儿童陪伴、听歌、故事机器人现阶段实用了。后来又玩了几个市面上能买到的问答系统硬件。得到的结论是为时尚早,问答系统难以实用。
从外观来征服用户的,也是一条路。工业设计、硅胶科技的方法都有……看起来好看其实蛮重要的,有利于user acquisition。当然user retention就不够了,那还是要真本事。
在我看来,聊天机器人,个人助手这些东西的场景绝不是智能对话,不是智能对话,不是智能对话(重要的事情说三遍)。聊天机器人往问答系统的方向做本身就错了。问答系统实用化根本不可能。聊天机器人的定位应该是自动化,就酱。
我想,做语义技术的应用第一重要的是盈利,而不是扩大市场份额。要垄断一个小市场,竞争对手还不够强大,市场小到巨头们无利可图。语义搜索,一定要走K策略,深挖领域知识,而不是推出一个大而全,大而无用的知识库、问答系统、个人助手、搜索引擎blah
blah。历史上那些走R策略的语义搜索都活不长。一些垂直的客服系统可能是有用的。我没做过那样的系统,所以也不知道其中的坑在哪里。
不仅技术上有无数的坑,要在工业界搞好一个问答的团队,那是真心不容易! 就是在IBM,
说服上层领导就花了好几年。而且摊子一大,各种山头光内耗就能搞死。另外,问答系统是最接近图灵测试的,如何巧妙地应对来自上面的各种不切实际的灵感,是多考验负责人的情商和智商啊。
鲍捷,文因互联创始人、CEO
微信公众ID:wenyinx3b
文因互联简介: 文因互联致力于用人工智能解决金融数据分析问题。创始团队来自MIT、RPI、Wright State、Marvell等知名大学和公司。技术团队核心人员深耕人工智能十余年,是知识图谱领域领军人物;金融团队核心人员来自海外对冲基金、BCG和麦肯锡,具备丰富的投资研究经验。
原文链接:
http://blog.memect.cn/?p=2839