专栏名称: AEii国际应用能源
发布应用能源领域资讯,介绍国际应用能源创新研究院工作,推广应用能源优秀项目,增进应用能源领域合作
目录
相关文章推荐
宝鸡市场监管  ·  总局令第98号公布! ·  昨天  
惠安县市场监督管理局  ·  【“3·15”百姓点检日】2025年第1期“ ... ·  昨天  
生物学霸  ·  实验室哪托 VS ... ·  2 天前  
51好读  ›  专栏  ›  AEii国际应用能源

【Applied Energy最新原创论文】波浪能发电机的位置和布局的多目标优化方法

AEii国际应用能源  · 公众号  ·  · 2023-06-30 19:30

正文

原文信息:

A multi-objective approach for location and layout optimization of wave energy converters

原文链接:

https://www.sciencedirect.com/science/article/pii/S0306261923007614

Highlights

Calibrating the SWAN model considering all possible factors using Python framework.

Run SWAN sequentially by generating wind speed and direction using LHS technique.

Calculating AEP concerning wind uncertainty with relevant PDF in each scenario.

Optimal selection of locations and layouts of the arrays regarding AEP.

Finding the best Pareto optimal solution through the NSGA-III MOOP algorithm.

摘要

由于波浪的能量密度高于其他可再生能源,波浪能转换器(WEC)越来越多地安装在各个沿海地区。考虑到沿海地区的高潜力,在不同配置的阵列布局中部署多个装置是非常好的。尽管WEC可以在热点地区捕获最高的能量,但必须优化安装这些设备的位置。因此本文首先根据随机风数据使用波浪传播模型SWAN来评估波浪能量潜力并计算年发电量(AEP),并基于拉丁超立方体采样(LHS)技术生成样本。然后,基于SWAN的序列输出,通过多目标优化(MOOP)算法NSGA-III确定转换器的最佳位置和布局。优化的布局包含与设备初始状态相关的4、8和16个设备的阵列。本文通过求解Pareto前沿,定位了近20个热点位置。由结果可知,4器件阵列的最佳布置是线性的。然而,8和16器件阵列的最佳排列变化很大,并且取决于该区域的AEP。然而,似乎最好将16个器件阵列定位在具有一到三行的对角线布局中。

更多关于" wave energy converters "的研究请见:

https://www.sciencedirect.com/search?qs=wave%20energy%20converters&pub=Applied%20Energy&cid=271429

Abstr act

Wave Energy Converters (WECs) have been increasingly installed in various coastal regions due to the higher energy density of waves than other renewable sources. Regarding coastal regions’ high potential, it is remarkably better to emplace multiple devices concerning a layout of the arrays with different configurations. Although WECs can capture the highest energy in hotspots, the location for installing these devices must be optimized. Purposefully, the wave propagation model, SWAN, was first employed respected to stochastic wind data to assess the wave energy potential and compute the annual energy production (AEP). The Latin Hypercube Sampling (LHS) technique was used to generate samples. Finally, the optimal location and layout of the arrays were determined through the multi-objective optimization (MOOP) algorithm, NSGA-III, based on SWAN’s sequential outputs. The optimized layouts contained arrays with 4-, 8-, and 16-devices with regard to devices’ initial state. Almost 20 hotspots were located by solving the Pareto-front. It was found that the best arrangement for the 4-device arrays is linear. However, the optimal arrangement of the 8- and 16-device arrays widely varies and depends on the AEP of the region. Nevertheless, it seems best to position the 16-device array in a diagonal layout with one to three rows.

Keywords

Wave generation

Wave energy

SWAN

Latin hypercube sampling

MOOP

NSGA-III

Graphics







请到「今天看啥」查看全文