专栏名称: 谷歌开发者
Google中国官方账号。汇集Android, Chrome, Angular等移动和网络开发技术、Google Play和AdMob等开发者成长、优化和变现平台。
目录
相关文章推荐
涵江时讯  ·  早安!涵江! ·  21 小时前  
科技每日推送  ·  比亚迪发布史上最快充电!闪充5分钟续航400 ... ·  2 天前  
51好读  ›  专栏  ›  谷歌开发者

逐步解析 | 如何使用 LangChain、NestJS 和 Gemma 2 构建一个 Agentic RAG 应用

谷歌开发者  · 公众号  · 科技媒体  · 2024-10-10 17:40

正文

本文原作者: Connie Leung, 谷歌开发者专家 (GDE),原文发布于: DEV Community
https://dev.to/railsstudent/build-agentic-rag-application-using-langchainjs-nestjs-htmx-and-gemma-2-3imd

本文将为您介绍如何使用 LangChain、NestJS 和 Gemma 2 构建 Agentic RAG 应用。然后,HTMX 和 Handlebar 模板引擎将响应呈现为列表。该应用使用 LangChain 创建内置的 DuckDuckGoSearch 工具以在互联网上查找信息。它还构建了一个自定义工具,用于调用 Dragon Ball Z API 来筛选角色,并返回其种族、隶属关系和能力等信息。最后构建了两个检索工具,用于从 angular.dev 检索 Angular Signal 和 Angular Form 网页。

这些工具均绑定到 Gemma 2 模型,然后模型、工具和聊天历史记录将传给 LangChain 智能体。智能体在收到查询请求时进行相应调用,可以智能生成函数调用,并使用正确的工具生成响应。


设置环境变量


将 .env.example 复制到 .env
PORT=3001GROQ_API_KEY=GROQ_MODEL=gemma2-9b-itGEMINI_API_KEY=GEMINI_TEXT_EMBEDDING_MODEL=text-embedding-004SWAGGER_TITLE='Langchain Search Agent'SWAGGER_DESCRIPTION='Use Langchain tools and agent to search information on the Internet.'SWAGGER_VERSION='1.0'SWAGGER_TAG='Gemma 2, Langchain.js, Agent Tools'DUCK_DUCK_GO_MAX_RESULTS=1
访问 https://aistudio.google.com/app/apikey ,登录帐号以创建一个新的 API 密钥。将 API 密钥替换为 GENINI_API_KEY


访问 Groq Cloud: https://console.groq.com/ ,登录帐号并注册一个新的 API 密钥。将 API 密钥替换为 GROQ_API_KEY


安装依赖项


npm i -save-exact @google/generative-ai @langchain/community@langchain/core @langchain/google-genai @langchain/groq @nestjs/axios @nestjs/config @nestjs/swagger @nestjs/throttler axios cheerio class-transformer class-validator compression duck-duck-scrape hbs langchain zod


定义应用的配置


创建 src/configs 文件夹并在其中添加 configuration.ts 文件。
export default () => ({ port: parseInt(process.env.PORT || '3001', 10), groq: {   apiKey: process.env.GROQ_API_KEY || '',   model: process.env.GROQ_MODEL || 'gemma2-9b-it', }, gemini: {   apiKey: process.env.GEMINI_API_KEY || '',   embeddingModel: process.env.GEMINI_TEXT_EMBEDDING_MODEL || 'text-embedding-004', },




    
 swagger: {   title: process.env.SWAGGER_TITLE || '',   description: process.env.SWAGGER_DESCRIPTION || '',   version: process.env.SWAGGER_VERSION || '',   tag: process.env.SWAGGER_TAG || '', }, duckDuckGo: {   maxResults: parseInt(process.env.DUCK_DUCK_GO_MAX_RESULTS || '1', 10), },});
创建 src/configs/types 文件夹,然后添加 duck-config.type.ts groq-config.type.ts 文件。 DuckDuckGoConfig GroqConfig 是将环境变量存储到自定义对象的配置类型。
// duck-config.type.ts
export type DuckDuckGoConfig = { maxResults: number;};
// groq-config.type.ts
export type GroqConfig = { model: string; apiKey: string;};


创建 Angular Doc 模块


为从 Angular 的官方文档中生成响应的检索工具创建一个 Angular Doc 模块。
nest g mo angularDoc


添加嵌入模型


添加 Gemini 文本嵌入模型,从而将文档计算为向量数组。在 application/embeddings 文件夹下创建 create-embedding-model.ts 文件。
// application/types/embedding-model-config.type.ts
export type EmbeddingModelConfig = { apiKey: string; embeddingModel: string;};
// application/embeddings/create-embedding-model.ts
import { TaskType } from '@google/generative-ai';import { GoogleGenerativeAIEmbeddings } from '@langchain/google-genai';import { ConfigService } from '@nestjs/config';import { EmbeddingModelConfig } from '../types/embedding-model-config.type';
export function createTextEmbeddingModel(configService: ConfigService, title = 'Angular') { const { apiKey, embeddingModel: model } = configService.get('gemini'); return new GoogleGenerativeAIEmbeddings({ apiKey, model, taskType: TaskType.RETRIEVAL_DOCUMENT, title, });}


创建文档


辅助函数将网页列表的内容加载到文档中,并将文档拆分为小块。 loadWebPage 是一个辅助函数,用于加载来自 angular.dev 的网页,并返回拆分后的文档。
// application/loaders/web-page-loader.ts
import { RecursiveCharacterTextSplitter } from '@langchain/textsplitters';import { CheerioWebBaseLoader } from '@langchain/community/document_loaders/web/cheerio';
async function loadWebPages(webPages: string[]) { const loaders = webPages.map((page) => new CheerioWebBaseLoader(page)); const docs = await Promise.all(loaders.map((loader) => loader.load())); const signalDocs = docs.flat(); return splitter.splitDocuments(signalDocs);}
loadSignalWebPages 函数将 Angular Signal 的页面加载到拆分后的文档中。
export async function loadSignalWebPages() { const webPages = [ 'https://angular.dev/guide/signals', 'https://angular.dev/guide/signals/rxjs-interop', 'https://angular.dev/guide/signals/inputs', 'https://angular.dev/guide/signals/model', 'https://angular.dev/guide/signals/queries', 'https://angular.dev/guide/components/output-fn', ];
return loadWebPages(webPages);}
loadFormWebPages 函数将 Angular Form 的页面加载到拆分后的文档中。
export async function loadFormWebPages() { const webPages = [   'https://angular.dev/guide/forms',   'https://angular.dev/guide/forms/reactive-forms',   'https://angular.dev/guide/forms/typed-forms',   'https://angular.dev/guide/forms/template-driven-forms',   'https://angular.dev/guide/forms/form-validation',   'https://angular.dev/guide/forms/dynamic-forms', ];
return loadWebPages(webPages);}


创建检索器


文本嵌入模型通过计算将文档块转换为向量,为了简化操作,向量存储于 MemoryVectorStore 中。向量存储调用 asRetriever 方法以返回向量存储检索器。
private async createSignalRetriever() { const docs = await loadSignalWebPages(); this.logger.log(`number of signal docs -> ${docs.length}`); const embeddings = createTextEmbeddingModel(this.configService, 'Angular Signal'); const vectorStore = await MemoryVectorStore.fromDocuments(docs, embeddings); return vectorStore.asRetriever(); }
private async createFormRetriever() { const docs = await loadFormWebPages(); this.logger.log(`number of form docs -> ${docs.length}`); const embeddings = createTextEmbeddingModel(this.configService, 'Angular Forms'); const vectorStore = await MemoryVectorStore.fromDocuments(docs, embeddings); return vectorStore.asRetriever();}
createSignalRetriever 函数返回一个用于 Angular Signal 的检索器, createFormRetriever 函数返回一个用于 Angular 模板驱动、响应式和动态表单的检索器。


从检索器创建检索工具


private async createSignalRetrieverTool(): Promiseany>> {   const retriever = await this.createSignalRetriever();   return createRetrieverTool(retriever, {     name: 'angular_signal_search',     description: `Search for information about Angular Signal.       For any questions about Angular Signal API, you must use this tool!       Please Return the answer in markdown       If you do not know the answer, please say you don't know.       `,   });}
private async createFormRetrieverTool(): Promiseany>> { const retriever = await this.createFormRetriever(); return createRetrieverTool(retriever, { name: 'angular_form_search', description: `Search for information about Angular reactive, typed reactive, template-drive, and dynamic forms. For any questions about Angular Forms, you must use this tool! Please return the answer in markdown. If you do not know the answer, please say you don't know.`, });}
async createRetrieverTools(): Promiseany>[]> { return Promise.all([this.createSignalRetrieverTool(), this.createFormRetrieverTool()]);}
createSignalRetrieverTool 函数调用 createRetrieverTool 方法从 Angular Signal 检索器创建工具。 createFormRetrieverTool 从 Angular Form 检索器创建工具。最后, createRetrieverTools 函数调用 createSignalRetrieverTool createFormRetrieverTool 来返回检索工具数组。


创建 Agent 模块


智能体模块负责创建一个 LangChain 智能体,该智能体执行各种工具以生成响应。
nest g mo agentnest g s agent/application/agentExecutor --flatnest g s agent/application/dragonBall --flatnest g s agent/presenters/http/agent --flat 


创建常量


// agent.constant.ts
export const AGENT_EXECUTOR = 'AGENT_EXECUTOR';
// groq-chat-model.constant.ts
export const GROQ_CHAT_MODEL = 'GROQ_CHAT_MODEL';
// tools.constant.ts
export const TOOLS = 'TOOLS';
定义常量是为了在 NestJS 应用中注入自定义资源。


Providers


GROQ_CHAT_MODEL 创建一个应用了 Gemma 2 模型的 Groq 聊天模型。
// groq-chat-model.provider.ts
import { ChatGroq } from '@langchain/groq';import { Inject, Provider } from '@nestjs/common';import { ConfigService } from '@nestjs/config';import { GroqConfig } from '~configs/types/groq-config.type';import { GROQ_CHAT_MODEL } from '../constants/groq-chat-model.constant';
export function InjectChatModel() { return Inject(GROQ_CHAT_MODEL);}
export const GroqChatModelProvider: Provider = { provide: GROQ_CHAT_MODEL, useFactory: (configService: ConfigService) => { const






请到「今天看啥」查看全文