专栏名称: MacTalk
MacTalk 开通于2012年末,内容起于 Mac 而不止 Mac,内容覆盖了技术、创业、产品和人文思考。文风有趣,又有一点力量。相关图书《MacTalk·人生元编程》《MacTalk·跨越边界》
目录
相关文章推荐
电动车公社  ·  冒死揭秘!OBD年检不过,凭什么强制报废? ·  3 天前  
电动车公社  ·  冒死揭秘!OBD年检不过,凭什么强制报废? ·  3 天前  
真故研究室  ·  洗剪吹太贵,倒逼年轻人出国理发 ·  6 天前  
真故研究室  ·  洗剪吹太贵,倒逼年轻人出国理发 ·  6 天前  
51好读  ›  专栏  ›  MacTalk

⼈⼯智能时代,程序员何去何从?

MacTalk  · 公众号  · 科技自媒体  · 2017-04-24 20:34

正文

题图:by mblockk from Instagram

QCon 大会的时候,我的一位好朋友也来到了现场。他是阿里老员工,P9,麾下数十号兄弟。他为人极其低调,十年如一日以一辆「马自达二」纵横滨江,无人敢挡,颇有腾讯 Tony 开宝来之风。这次大会他一直泡在人工智能场子里面,就没离开过。我说什么情况,你不是在做天猫的业务么,看这些干嘛?他说,现在做算法和人工智能的家伙太厉害了,再不学习,真不知道我们这些做业务工程的未来能做什么了。

看着他阴郁的脸色,我心想好险,好在我除了写代码还能写文章 —— 难道以后 AI 也能写文章了?

去年 AlphaGo 在围棋人机大战中击败李世⽯,「⼈⼯智能」再次成为热词⾛⼊⼤众视线。为什么再次?因为 AI 的历史已经很久了,事实上,各⼤科技巨擎在⼈⼯智能领域的布局早就开始了,比如,Facebook 成⽴了 FAIR 和 AML;Google 前后并购11家 AI 公司,更以4亿美元巨资收购 DeedMind,2017年2月正式推出机器学习框架 TensorFlow 1.0;Microsoft 雇⽤的⼈⼯智能科学家和⼯程师⾼达数百位,囊括⼈⼯智能领域数⼗个分⽀;Amazon、IBM、Uber、Tesla 也各⾃在⼈⼯智能领域有巨大的投入。在国内,腾讯⼴招⼈才构建 DI-X 深度学习平台;阿⾥成⽴了 iDST 部⻔并于年初发布「NASA 」计划,为⼈⼯智能招兵买⻢;百度请来陆奇,将⾃身定义为⼈⼯智能企业。

人工智能是未来的方向还是另一个泡沫,亦或是遥不可及的「趋势」?不重要,作为程序员来说,我们把人工智能当做一种正在使用的、未来即将大放异彩的技术就行了。

人工智能分为狭义和广义,狭义人工智能指在一个相对窄的、强逻辑性的领域内完成推理、分析和决策任务,比如下棋,自动驾驶,智能推荐,搜索引擎,图形图像和语音识别等等。这方面的人工智能已经在持续改变我们的生活。广义人工智能呢?我觉得是认知能力和理解能力可以与人类相媲美甚至优于人类的计算机。人们总是在说「机器要像人一样思考才能获得智能」,事实上,如果我们回到图灵在1956年描述人工智能的原点时就能知道,机器最重要的是解决人脑能够解决的问题,而不是采用和人一样的方式。

今年2⽉份,李开复老师公开预⾔:AI 的⾰命将是⼀场⾮常彻底和⾎腥的⾰命。不能接受 AI+ 概念的公司将被颠覆。前⼏周,亚⻢逊 CEO 杰夫·⻉索斯在年度股东信中说:⼈⼯智能会引⼊很多变⾰,⽽机器学习会帮助那些积极拥抱它们的公司,同时对那些抗拒变⾰的公司构成障碍,并表示亚⻢逊正全⼒拥抱⼈⼯智能。

每当新趋势来临,网络上总有各种看客和「专家」发出各种声音,比如「人工智能打脸」「⼈⼯智能是否会导致⼈类灭绝」等等。这个场景给我的感觉就像是:⼀座巨⼤的金矿前热热闹闹挤满了⼈,⼈们对着这座宝藏指⼿画脚、窃窃私语。然⽽技术变⾰的真正主⻆,从来都是全副武装的专业⼈员 —— 具备理解、掌握和应⽤机器学习技术能⼒的科学家和工程师们。

事实上,⽬前大部分国内外知名的互联⽹企业⽆⼀不在建⽴⾃⼰的机器学习团队,以期⽤机器学习技术,提升产品的体验和智能化程度。对于工程师们,我想说一个观点,「机器学习技术可能是大部分技术人员绕不过的一个槛」,即使你自己不去做这样的应用和实践,未来也会使用这样的服务为客户提供更好更智能的产品。

为什么不向前一步呢?

图 by Instagram

经历了移动互联⽹时代变⾰的朋友都或多或少都有体会 —— 2009年左右,移动互联⽹浪潮汹涌而至,那时候,很多在 PC 时代的技术⼈并没有意识到新的技术时代已经来临,很多人保守的选择了固守旧的技术领地,以至于错失了很多创新的机会。

物竞天择,适者⽣存。与大自然一样,技术世界同样是残酷的,⾰命性的技术总是会周期性地出现,追寻并选择最合适的技术并创造最好的产品,对技术从业者而言,是永恒的主题。

机器学习很可能是这样⼀个可以引起⾏业洗牌的「⾰命性」技术。它的技术特性能够进⼀步地解放⼈类,⽤更低的成本创造更多的价值。现在机器学习的算法和框架已⾜够成熟,硬件⽀持⾜够强⼤,⼤数据技术也解除了训练数据量不⾜的限制。接下来,它对各个⾏业的改造,将是潜移默化的,所谓随风潜入夜,润物细无声,也许有一天你会惊喜的发现,自己的工作已经被机器取代了呢?:)

如何进入这个领域呢?坚持学习和实践。目前网络上有大量的学习资料和开源框架,有人还在 GitHub 上直播自己从一个移动开发者转型成为一名机器学习工程师过程(说实话我也想做一个类似的直播),资源从未如此丰富,你需要的就是选好方向,深入学习。除此之外,我们还应该去了解机器学习技术在各个⾏业中是如何应⽤的,相关的技术细节,⼯程上的最佳实践,成熟的产品架构设计,⾏业的上下游等等。工程师们需要去接触这些⾏业的核⼼⼈员,与他们交流、沟通、学习。

深情按压,小额赞善

推荐一个大会:2017全球机器学习技术⼤会。

⼤会的讲师全部来⾃国内外⼀线⼈⼯智能公司,既包括 Google、 Facebook、 Microsoft 这样的巨型科技公司,也包括别具特⾊的 Skymind、Operator、 Boomtrain 这样的硅⾕创业新秀;还有类似 Uber、 Netflix、 Esty、 Pinterest 这样基于机器学习获得成果的创新企业。当然,国内在 AI 领域投入重兵的阿⾥、腾讯等巨头⾃然也会不缺席。这些都是耕耘在机器学习领域的⼀线⼯程技术专家,在全球机器学习领域相当有代表性。

本次⼤会有主题演讲、互动研讨、案例分享、⾼端培训多样的形式,站在⼀线技术⼈员的⻆度,分享机器学习技术在各领域的发展和实践应⽤。对正在从事或预备投身机器学习⾏业的朋友来说,含⾦量⾮同⼀般。

当然,最后能有多少收获,还要看你⾃⼰的「学习」能力了。

长按识别二维码,免费获取大会演讲稿和直播讲座

点击「阅读原⽂」,获取「2017全球机器学习技术⼤会」更多信息。