此次排查发生在 2020 年 11 月份,一直没时间写博客描述事情经过,本次正好一起写了吧。
就凭这个现象,能列出来的原因数不胜数。本篇博客主要叙述一下几次排查以及最后如何确定原因的过程,可能不一定适用于其他集群,就当是提供一个参考吧。排查过程比较冗长,过去太久了,我也不太可能回忆出所有细节,希望大家见谅。
用户请求=> Nginx => Ingress => uwsgi
不要问为什么有了 Ingress 还有 Nginx,这是历史原因,有些工作暂时需要由 Nginx 承担。
请求变慢一般马上就会考虑,程序是不是变慢了,所以在发现问题后,首先在 uwsgi 中增加简单的小接口,这个接口是处理快并且马上返回数据,然后定时请求该接口。在运行几天之后,确认到该接口的访问速度也很慢,排除程序中的问题,准备在链路中查找原因。
由于我们的 Nginx 有 2 层,需要针对它们分别确认,看看究竟是哪一层慢了。请求量是比较大的,如果针对每个请求去查看,效率不高,而且有可能掩盖真正原因,所以这个过程采用统计的方式。统计的方式是分别查看两层 Nginx 的日志情况。由于我们已经在 ELK 上接入了日志,ELK 中筛选数据的脚本简单如下:
{
"bool": {
"must": [
{
"match_all": {}
},
{
"match_phrase": {
"app_name": {
"query": "xxxx"
}
}
},
{
"match_phrase": {
"path": {
"query": "/app/v1/user/ping"
}
}
},
{
"range": {
"request_time": {
"gte": 1,
"lt": 10
}
}
},
{
"range": {
"@timestamp": {
"gt": "2020-11-09 00:00:00",
"lte": "2020-11-12 00:00:00",
"format": "yyyy-MM-dd HH:mm:ss",
"time_zone": "+08:00"
}
}
}
]
}
}
根据 trace_id 可以获取到 Nignx 日志以及 Ingress 日志,通过 ELK 的 API 获得。
# 这个数据结构用来记录统计结果,
# [[0, 0.1], 3]表示落在 0~0.1 区间的有 3 条记录
# 因为小数的比较和区间比较麻烦,所以采用整数,这里的 0~35 其实是 0~3.5s 区间
# ingress_cal_map = [
# [[0, 0.1], 0],
# [[0.1, 0.2], 0],
# [[0.2, 0.3], 0],
# [[0.3, 0.4], 0],
# [[0.4, 0.5], 0],
# [[0.5, 1], 0],
# ]
ingress_cal_map = []
for x in range(0, 35, 1):
ingress_cal_map.append(
[[x, (x+1)], 0]
)
nginx_cal_map = copy.deepcopy(ingress_cal_map)
nginx_ingress_gap = copy.deepcopy(ingress_cal_map)
ingress_upstream_gap = copy.deepcopy(ingress_cal_map)
def trace_statisics():
trace_ids = []
# 这里的 trace_id 是提前查找过,那些响应时间比较久的请求所对应的 trace_id
with open(trace_id_file) as f:
data = f.readlines()
for d in data:
trace_ids.append(d.strip())
cnt = 0
for trace_id in trace_ids:
try:
access_data, ingress_data = get_igor_trace(trace_id)
except TypeError as e:
# 继续尝试一次
try:
access_data, ingress_data = get_igor_trace.force_refresh(trace_id)
except TypeError as e:
print("Can't process trace {}: {}".format(trace_id, e))
continue
if access_data['path'] != "/app/v1/user/ping": # 过滤脏数据
continue
if 'request_time' not in ingress_data:
continue
def get_int_num(data): # 数据统一做 *10 处理
return int(float(data) * 10)
# 针对每个区间段进行数据统计,可能有点罗嗦和重复,我当时做统计够用了
ingress_req_time = get_int_num(ingress_data['request_time'])
ingress_upstream_time = get_int_num(ingress_data['upstream_response_time'])
for cal in ingress_cal_map:
if ingress_req_time >= cal[0][0] and ingress_req_time cal[1] += 1
break
nginx_req_time = get_int_num(access_data['request_time'])
for cal in nginx_cal_map:
if nginx_req_time >= cal[0][0] and nginx_req_time cal[1] += 1
break
gap = nginx_req_time - ingress_req_time
for cal in nginx_ingress_gap:
if gap >= cal[0][0] and gap <= cal[0][1]:
cal[1] += 1
break
gap = ingress_req_time - ingress_upstream_time
for cal in ingress_upstream_gap:
if gap >= cal[0][0] and gap <= cal[0][1]:
cal[1] += 1
break
我分别针对 request_time(Nginx),request_time(Ingress)以及 requet_time(nginx) - request_time(Ingress)做了统计。
图一:超过半数的请求落在 1 ~ 1.1s 区间,1s ~ 2s 的请求比较均匀,之后越来越少了。
图二:大约 1/4 的请求其实已经在 0.1s 内返回了,但是 1 ~ 1.1s 也有 1/4 的请求落上去了,随后的结果与图一类似。
从图 1 图 2 结合来看,部分请求在 Ingress 侧处理的时间其实比较短的。
图三:比较明显了,2/3 的请求在响应时间方面能够保持一致,1/3 的请求会有 1s 左右的延迟。
从统计结果来看,Nginx => Ingress 以及 Ingress => upstream,都存在不同程度的延迟,超过 1s 的应用,大约有 2/3 的延迟来自 Ingress => upstream,1/3 的延迟来自 Nginx => Ingress。
抓包调查主要针对 Ingress => uwsgi,由于数据包延迟的情况只是偶发性现象,所以需要抓取所有的数据包再进行过滤……这是一条请求时间较长的数据,本身这个接口返回应该很快。
{
"_source": {
"INDEX": "51",
"path": "/app/v1/media/",
"referer": "",
"user_agent": "okhttp/4.8.1",
"upstream_connect_time": "1.288",
"upstream_response_time": "1.400",
"TIMESTAMP": "1605776490465",
"request": "POST /app/v1/media/ HTTP/1.0",
"status": "200",
"proxy_upstream_name": "default-prod-XXX-80",
"response_size": "68",
"client_ip": "XXXXX",
"upstream_addr": "172.32.18.194:6000",
"request_size": "1661",
"@source": "XXXX",
"domain": "XXX",
"upstream_status": "200",
"@version": "1",
"request_time": "1.403",
"protocol": "HTTP/1.0",
"tags": ["_dateparsefailure"],
"@timestamp": "2020-11-19T09:01:29.000Z",
"request_method": "POST",
"trace_id": "87bad3cf9d184df0:87bad3cf9d184df0:0:1"
}
}
首先从 Ingress 侧查看,连接在 21.585446 开始,22.588023 时,进行了数据包重新发送的操作。
从 Node 侧查看,Node 在 Ingress 数据包发出后不久马上就收到了 syn,也立刻进行了 syn 的返回,但是不知为何 1s 后才出现在 Ingress 处。
有一点比较令人在意,即便是数据包发生了重传,但是也没有出现丢包的问题,从两台机器数据包的流转来看,此次请求中,大部分的时间是因为数据包的延迟到达造成的,重传只是表面现象,真正的问题是发生了数据包的延迟。
从随机抓包的情况来看,不止是 SYN ACK 发生了重传:
有些 FIN ACK 也会,数据包的延迟是有概率的行为!
单单看这个抓包可能只能确认是发生了丢包,但是如果结合 Ingress 与 Nginx 的日志请求来看,如果丢包发生在 TCP 连接阶段,那么在 Ingress 中,我们就可以查看 upstream_connect_time 这个值来大致估计下超时情况。当时是这么整理的记录:
我初步猜测这部分时间主要消耗在了 TCP 连接建立时,因为建立连接的操作在两次 Nginx 转发时都存在,而我们的链路全部使用了短连接,下一步我准备增加 $upstream_connect_time 变量,记录建立连接花费的时间。http://nginx.org/en/docs/http/ngx_http_upstream_module.html
既然可以了解到 TCP 连接的建立时间比较久,我们可以用它来作为一个衡量指标,我把 wrk 也修改了下,增加了对于连接时间的测量,具体的PR见:https://github.com/wg/wrk/pull/447,我们可以利用这一项指标衡量后端的服务情况。