专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
爱可可-爱生活  ·  晚安~ #晚安# -20250322222522 ·  8 小时前  
爱可可-爱生活  ·  [LG]《Time After Time: ... ·  昨天  
爱可可-爱生活  ·  价值观画像:为人类多样性编码的突破 ... ·  昨天  
爱可可-爱生活  ·  本文创新性地提出了Tapered ... ·  3 天前  
51好读  ›  专栏  ›  机器学习研究会

【论文】Siggraph 2017论文:手机等移动设备端的图像处理技术,学习人类的修图(附数据和代码)

机器学习研究会  · 公众号  · AI  · 2017-08-06 23:38

正文



点击上方 “机器学习研究会” 可以订阅哦


摘要

转自:视觉机器人

Siggraph 2017,深度双边学习进行实时图像增强,Deep Bilateral Learning for Real-Time Image Enhancement


摘要:

Performance is a critical challenge in mobile image processing. Given a reference imaging pipeline, or even human-adjusted pairs of images, we seek to reproduce the enhancements and enable real-time evaluation. For this, we introduce a new neural network architecture inspired by bilateral grid processing and local affine color transforms. Using pairs of input/output images, we train a convolutional neural network to predict the coefficients of a locally-affine model in bilateral space. Our architecture learns to make local, global, and content-dependent decisions to approximate the desired image transformation. At runtime, the neural network consumes a low-resolution version of the input image, produces a set of affine transformations in bilateral space, upsamples those transformations in an edge-preserving fashion using a new slicing node, and then applies those upsampled transformations to the full-resolution image. Our algorithm processes high-resolution images on a smartphone in milliseconds, provides a real-time viewfinder at 1080p resolution, and matches the quality of state-of-the-art approximation techniques on a large class of image operators. Unlike previous work, our model is trained off-line from data and therefore does not require access to the original operator at runtime. This allows our model to learn complex, scene-dependent transformations for which no reference implementation is available, such as the photographic edits of a human retoucher.







请到「今天看啥」查看全文