专栏名称: 数据派THU
本订阅号是“THU数据派”的姊妹账号,致力于传播大数据价值、培养数据思维。
目录
相关文章推荐
大数据文摘  ·  具身大模型,国内最大融资诞生 ·  6 天前  
DataFunTalk  ·  从大数据到大模型:现代应用的数据范式 ·  2 天前  
DataFunTalk  ·  从大数据到大模型:现代应用的数据范式 ·  2 天前  
第一财经资讯  ·  大数据“杀熟”将被整治!四部门出手了! ·  3 天前  
第一财经资讯  ·  大数据“杀熟”将被整治!四部门出手了! ·  3 天前  
数据派THU  ·  【NeurIPS2024】通过超球面能量最小 ... ·  4 天前  
数据派THU  ·  IoTDB ... ·  1 周前  
51好读  ›  专栏  ›  数据派THU

近一周最受欢迎的20篇精选AI论文(附论文)

数据派THU  · 公众号  · 大数据  · 2017-07-22 19:00

正文

来源:全球人工智能

本文为你列出了最近一周受欢迎的20篇AI论文。


No 1. 《ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices》

https://arxiv.org/abs/1707.01083


No 2. 《Learning Macromanagement in StarCraft from Replays using Deep Learning》

https://arxiv.org/abs/1707.03743


No 3. 《Creatism: A deep-learning photographer capable of creating professional work》

https://arxiv.org/abs/1707.03491

https://google.github.io/creatism/


No 4. 【合成奥巴马:语音唇形同步学习】

http://grail.cs.washington.edu/projects/AudioToObama/


No 5. 《Revisiting Unreasonable Effectiveness of Data in Deep Learning Era》

https://arxiv.org/abs/1707.02968


No 6. 《Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning》

https://arxiv.org/abs/1706.10207


No 7. 《SMC Faster R-CNN: Toward a scene-specialized multi-object detector》

https://arxiv.org/abs/1706.10217


No 8. 《Fast Algorithms for Learning Latent Variables in Graphical Models》

https://arxiv.org/abs/1706.08936


No 9. 《Text Summarization Techniques: A Brief Survey》

https://arxiv.org/abs/1707.02268


No 10. 《Dual Path Networks》

https://arxiv.org/abs/1707.01629


No 11. 《NO Need to Worry about Adversarial Examples in Object Detection in Autonomous Vehicles》

https://arxiv.org/abs/1707.03501


No 12. 《A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques》

https://arxiv.org/abs/1707.02919


No 13. 《SCAN: Learning Abstract Hierarchical Compositional Visual Concepts》

https://arxiv.org/abs/1707.03389


No 14. 《Deep Semantic Segmentation for Automated Driving: Taxonomy, Roadmap and Challenges》

https://arxiv.org/abs/1707.02432


No 15. 《Learning Loss Functions for Semi-supervised Learning via Discriminative Adversarial Networks》

https://arxiv.org/abs/1707.02198


No 16. 《Robust Face Tracking using Multiple Appearance Models and Graph Relational Learning》

https://arxiv.org/abs/1706.09806


No 17. 《CNN features are also great at unsupervised classification》

https://arxiv.org/abs/1707.01700


No 18. 《Convolutional Sequence to Sequence Learning》

https://s3.amazonaws.com/fairseq/papers/convolutional-sequence-to-sequence-learning.pdf

https://arxiv.org/abs/1705.03122


No 19. 《Deep Value Networks Learn to Evaluate and Iteratively Refine Structured Outputs(DVN)》

https://arxiv.org/abs/1703.04363

https://gyglim.github.io/deep-value-net/

https://github.com/gyglim/dvn


No 20. 《Community Discovery in Dynamic Networks: a Survey》

https://arxiv.org/abs/1707.03186


编辑:黄继彦


公众号底部菜单有惊喜哦!

企业,个人加入组织请查看“联合会”

往期精彩内容请查看“号内搜”

加入志愿者或联系我们请查看“关于我们”