专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
曾星智中线投资  ·  不会被AI智能打败的投资方法 ·  昨天  
曾星智中线投资  ·  不会被AI智能打败的投资方法 ·  昨天  
爱可可-爱生活  ·  《爱可可微博热门分享(12.25)》 ... ·  2 天前  
黄建同学  ·  收藏!midjourney ... ·  2 天前  
爱可可-爱生活  ·  [LG] OpenAI o1 System ... ·  3 天前  
51好读  ›  专栏  ›  机器学习研究会

【推荐】OpenCV机器学习

机器学习研究会  · 公众号  · AI  · 2017-07-23 21:58

正文



点击上方“机器学习研究会”可以订阅哦
摘要
 

转自:爱可可-爱生活

This is the Jupyter notebook version of the following book:

Michael Beyeler 
Machine Learning for OpenCV: A practical introduction to the world of machine learning and image processing using OpenCV and Python

Table of Contents

Preface

Foreword by Ariel Rokem

  1. A Taste of Machine Learning

  2. Working with Data in OpenCV

  • Dealing with Data Using Python's NumPy Package

  • Loading External Datasets in Python

  • Visualizing Data Using Matplotlib

  • Dealing with Data Using OpenCV's TrainData container

  • First Steps in Supervised Learning

    • Measuring Model Performance with Scoring Functions

    • Understanding the k-NN Algorithm

    • Using Regression Models to Predict Continuous Outcomes

    • Applying Lasso and Ridge Regression

    • Classifying Iris Species Using Logistic Regression

  • Representing Data and Engineering Features

    • Preprocessing Data

    • Reducing the Dimensionality of the Data

    • Representing Categorical Variables

    • Representing Text Features

    • Representing Images

  • Using Decision Trees to Make a Medical Diagnosis

    • Building Your First Decision Tree

    • Using Decision Trees to Diagnose Breast Cancer

    • Using Decision Trees for Regression

  • Detecting Pedestrians with Support Vector Machines

    • Implementing Your First Support Vector Machine

    • Detecting Pedestrians in the Wild

    • Additional SVM Exercises

  • Implementing a Spam Filter with Bayesian Learning

    • Implementing Our First Bayesian Classifier

    • Classifying E-Mails Using Naive Bayes

  • Discovering Hidden Structures with Unsupervised Learning

    • Understanding k-Means Clustering

    • Compressing Color Images Using k-Means

    • Classifying Handwritten Digits Using k-Means

    • Implementing Agglomerative Hierarchical Clustering

  • Using Deep Learning to Classify Handwritten Digits

    • Understanding Perceptrons

    • Implementing a Multi-Layer Perceptron in OpenCV

    • Getting Acquainted with Deep Learning

    • Training an MLP in OpenCV to Classify Handwritten Digits

    • Training a Deep Neural Net to Classify Handwritten Digits Using Keras

  • Combining Different Algorithms Into an Ensemble

    • Understanding Ensemble Methods

    • Combining Decision Trees Into a Random Forest

    • Using Random Forests for Face Recognition

    • Implementing AdaBoost

    • Combining Different Models Into a Voting Classifier

  • Selecting the Right Model with Hyper-Parameter Tuning

    • Evaluating a Model

    • Understanding Cross-Validation, Bootstrapping, and McNemar's Test

    • Tuning Hyperparameters with Grid Search

    • Chaining Algorithms Together to Form a Pipeline

  • Wrapping Up


  • 链接:

    https://github.com/mbeyeler/opencv-machine-learning


    原文链接:

    https://m.weibo.cn/1402400261/4132029312680424

    “完整内容”请点击【阅读原文】
    ↓↓↓