专栏名称: 生信圈
关注生物医学大数据、以及数据分析方法在转化医学研究中的应用进展,讨论与生物信息相关的一切话题。
目录
相关文章推荐
春城晚报  ·  “真看不下去了”!知名男星宣布做卫生巾 ·  4 小时前  
九派新闻  ·  《黑神话:悟空》PS5国行版获批 ·  23 小时前  
九派新闻  ·  《黑神话:悟空》PS5国行版获批 ·  23 小时前  
TapTap发现好游戏  ·  这款“大厂离职回老家”模拟器,可能是更适合中 ... ·  4 天前  
昆明信息港  ·  从昆明可以坐大巴去拉萨啦!票价…… ·  昨天  
51好读  ›  专栏  ›  生信圈

机器学习|自然语言理解-从规则到深度学习

生信圈  · 公众号  ·  · 2017-08-28 21:00

正文

本文转载自 云栖社区 ,如有侵权请联系删除。


摘要: 自然语言理解是人工智能的核心难题之一,也是目前智能语音交互和人机对话的核心难题。之前写过一篇文章自然语言理解,介绍了当时NLU的系统方案,感兴趣的可以再翻一番,里面介绍过的一些内容不再赘述。本文详细讨论了自然语言理解的难点,并进一步针对自然语言理解的两个核心问题,详细介绍了规则方法和深度学习的应用。

引言

自然语言理解是人工智能的核心难题之一,也是目前智能语音交互和人机对话的核心难题。维基百科有如下描述[1]:


Natural language understanding (NLU) is a subtopic of natural language processing in artificial intelligence thatdeals with machine reading comprehension. NLU is considered an AI-hard problem.


对于AI-hard的解释如下:


In the field of artificial intelligence, the most difficult problems are informally known as AI-complete or AI-hard,implying that the difficulty of these computational problems is equivalent to that of solving the central artificial intelligence problem—making computers as intelligent as people, or strong AI.


简言之,什么时候自然语言能被机器很好的理解了,strong AI也就实现了~~


之前写过一篇文章自然语言理解,介绍了当时NLU的系统实现方案,感兴趣的可以再翻一番,里面介绍过的一些内容不再赘述。那篇文章写于2015年底,过去一年多,技术进展非常快,我们的算法也进行了大量升级,核心模块全部升级到深度学习方案。本文主要结合NUI平台中自然语言理解的具体实现,详细的、系统的介绍意图分类和属性抽取两个核心算法。如下图所示,第一个框中是意图分类,第二个框中是属性抽取。

对于整个NUI平台的介绍可以参考孙健/千诀写的从“连接”到“交互”—阿里巴巴智能对话交互实践及思考。

自然语言理解的难点

为什么自然语言理解很难?本质原因是语言本身的复杂性。自然语言尤其是智能语音交互中的自然语言,有如下的5个难点:


1. 语言的多样性


一方面,自然语言不完全是有规律的,有一定规律,也有很多例外;另一方面,自然语言是可以组合的,字到词,词到短语,短语到从句、句子,句子到篇章,这种组合性使得语言可以表达复杂的意思。以上两方面共同导致了语言的多样性,即同一个意思可以有多种不同的表达方式,比如:


  • 我要听大王叫我来巡山

  • 给我播大王叫我来巡山

  • 我想听歌大王叫我来巡山

  • 放首大王叫我来巡山

  • 给唱一首大王叫我来巡山

  • 放音乐大王叫我来巡山

  • 放首歌大王叫我来巡山

  • 给大爷来首大王叫我来巡山

2. 语言的歧义性


在缺少语境约束的情况下,语言有很大的歧义性,比如:


  • 我要去拉萨

  • 火车票?

  • 飞机票?

  • 音乐?

  • 还是查找景点?


3. 语言的鲁棒性


语言在输入的过程中,尤其是通过语音识别转录过来的文本,会存在多字、少字、错字、噪音等等问题,比如:


  • 错字

  • 大王叫我来新山

  • 多字

  • 大王叫让我来巡山

  • 少字

  • 大王叫我巡山

  • 别称

  • 熊大熊二(指熊出没)

  • 不连贯

  • 我要看那个恩花千骨

  • 噪音

  • 全家只有大王叫我去巡山咯


4. 语言的知识依赖


语言是对世界的符号化描述,语言天然连接着世界知识,比如:


  • 大鸭梨

  • 除了表示水果,还可以表示餐厅名

  • 七天

  • 除了表示时间,还可以表示酒店名

  • 总参

  • 除了表示总参谋部,还可以表示餐厅名

  • 天气预报

  • 还是一首歌名

  • 晚安

  • 这也是一首歌名


5. 语言的上下文


上下文的概念包括很多内容,比如:


  • 对话上下文

  • 设备上下文

  • 应用上下文

  • 用户画像

  • ...


U:买张火车票
A:请问你要去哪里?
U:宁夏


这里的宁夏是指地理上的宁夏自治区


U:来首歌听

A:请问你想听什么歌?
U:宁夏


这里的宁夏是指歌曲宁夏

意图分类的实现方法

意图分类是一种文本分类。主要的方法有:


  • 基于规则(rule-based)

  • CFG

  • JSGF

  • ……


  • 传统机器学习方法

  • SVM

  • ME

  • ……


  • 深度学习方法

  • CNN

  • RNN/LSTM

  • ……


3.1 基于规则的方法


这里重点介绍基于CFG的方法[2],该方法最早出现于CMU Phoenix System中,以下是一个飞机票领域的示例:

按照上面的文法,对于“从北京去杭州的飞机票”,可以展成如下的树:

3.2 基于传统统计的方法


我们在第一版的系统中,采用的基于SVM的方法,在特征工程上做了很多工作。第二版中切换到深度学习模型后,效果有很大提升,此处略过,直接介绍深度学习方法。







请到「今天看啥」查看全文