在了解一个事物之前,你首先得先需要见过它,你才会有印象,才会有想要了解的兴趣,所以我们首先需要先看一下什么是内存以及它的物理结构是怎样的。
内存的内部是由各种 IC 电路组成的,它的种类很庞大,但是其主要分为三种存储器
-
随机存储器
(RAM)
:内存中最重要的一种,表示既可以从中读取数据,也可以写入数据。当机器关闭时,内存中的信息会 丢失。
-
只读存储器
(ROM
)
:
ROM 一般只能用于数据的读取,不能写入数据,但是当机器停电时,这些数据不会丢失。
-
高速缓存
(Cache)
:
Cache 也是我们经常见到的,它分为一级缓存
(L1 Cache)
、二级缓存
(L2 Cache)
、三级缓存
(L3 Cache)
这些数据,它位于内存和 CPU 之间,是一个读写速度比内存更快的存储器。
当 CPU 向内存写入数据时,这些数据也会被写入高速缓存中。
当 CPU 需要读取数据时,会直接从高速缓存中直接读取,当然,如需要的数据在 Cache 中没有,CPU 会再去读取内存中的数据。
内存 IC 是一个完整的结构,它内部也有电源、地址信号、数据信号、控制信号和用于寻址的 IC 引脚来进行数据的读写。
下面是一个虚拟的 IC 引脚示意图
图中 VCC 和 GND 表示电源,A0 - A9 是地址信号的引脚,D0 - D7 表示的是控制信号、RD 和 WR 都是好控制信号,我用不同的颜色进行了区分,将电源连接到 VCC 和 GND 后,就可以对其他引脚传递 0 和 1 的信号,大多数情况下,+5V 表示 1,0V 表示 0。
我们都知道内存是用来存储数据,那么这个内存 IC 中能存储多少数据呢?
D0 - D7 表示的是数据信号,也就是说,一次可以输入输出 8 bit = 1 byte 的数据。
A0 - A9 是地址信号共十个,表示可以指定 00000 00000 - 11111 11111 共 2 的 10 次方 = 1024 个地址。
每个地址都会存放 1 byte 的数据,因此我们可以得出内存 IC 的容量就是 1 KB。
如果我们使用的是 512 MB 的内存,这就相当于是 512000
(512 * 1000)
个内存 IC。当然,一台计算机不太可能有这么多个内存 IC ,然而,通常情况下,一个内存 IC 会有更多的引脚,也就能存储更多数据。
内存的读写过程
让我们把关注点放在内存 IC 对数据的读写过程上来吧!
我们来看一个对内存 IC 进行数据写入和读取的模型
来详细描述一下这个过程,假设我们要向内存 IC 中写入 1byte 的数据的话,它的过程是这样的:
-
首先给 VCC 接通 +5V 的电源,给 GND 接通 0V 的电源,使用 A0 - A9 来指定数据的存储场所,然后再把数据的值输入给 D0 - D7 的数据信号,并把 WR
(write)
的值置为 1,执行完这些操作后,即可以向内存 IC 写入数据
-
读出数据时,只需要通过 A0 - A9 的地址信号指定数据的存储场所,然后再将 RD 的值置为 1 即可。
-
图中的 RD 和 WR 又被称为控制信号。
其中当WR 和 RD 都为 0 时,无法进行写入和读取操作。
内存的现实模型
为了便于记忆,我们把内存模型映射成为我们现实世界的模型,在现实世界中,内存的模型很像我们生活的楼房。
在这个楼房中,1 层可以存储一个字节的数据,楼层号就是地址,下面是内存和楼层整合的模型图
我们知道,程序中的数据不仅只有数值,还有数据类型的概念,从内存上来看,就是占用内存大小
(占用楼层数)
的意思。即使物理上强制以 1 个字节为单位来逐一读写数据的内存,在程序中,通过指定其数据类型,也能实现以特定字节数为单位来进行读写。
下面是一个以特定字节数为例来读写指令字节的程序的示例
// 定义变量
char a;
short b;
long c;
// 变量赋值
a = 123;
b = 123;
c = 123;
我们分别声明了三个变量 a,b,c ,并给每个变量赋上了相同的 123,这三个变量表示内存的特定区域。
通过变量,即使不指定物理地址,也可以直接完成读写操作,操作系统会自动为变量分配内存地址。
这三个变量分别表示 1 个字节长度的 char,2 个字节长度的 short,表示 4 个字节的 long。
因此,虽然数据都表示的是 123,但是其存储时所占的内存大小是不一样的。
如下所示
这里的 123 都没有超过每个类型的最大长度,所以 short 和 long 类型为所占用的其他内存空间分配的数值是 0,这里我们采用的是低字节序列的方式存储
低字节序列:
将数据低位存储在内存低位地址。
高字节序列:
将数据的高位存储在内存地位的方式称为高字节序列。
指针
指针是 C 语言非常重要的特征,指针也是一种变量,只不过它所表示的不是数据的值,而是内存的地址。
通过使用指针,可以对任意内存地址的数据进行读写。
在了解指针读写的过程前,我们先需要了解如何定义一个指针,和普通的变量不同,在定义指针时,我们通常会在变量名前加一个 * 号。
例如我们可以用指针定义如下的变量
char *d;
short *e;
long *f;
我们以 32 位计算机为例,32 位计算机的内存地址是 4 字节,在这种情况下,指针的长度也是 32 位。
然而,变量 d e f 却代表了不同的字节长度,这是为什么呢?
实际上,这些数据表示的是从内存中一次读取的字节数,比如 d e f 的值都为 100,那么使用 char 类型时就能够从内存中读写 1 byte 的数据,使用 short 类型就能够从内存读写 2 字节的数据, 使用 long 就能够读写 4 字节的数据,下面是一个完整的类型字节表
我们可以用图来描述一下这个读写过程
数组是内存的实现
数组是指多个相同的数据类型在内存中连续排列的一种形式。
作为数组元素的各个数据会通过下标编号来区分,这个编号也叫做索引,如此一来,就可以对指定索引的元素进行读写操作。
首先先来认识一下数组,我们还是用 char、short、long 三种元素来定义数组,数组的元素用[value] 扩起来,里面的值代表的是数组的长度,就像下面的定义
char g[100];
short h[100];
long i[100];
数组定义的数据类型,也表示一次能够读写的内存大小,char 、short 、long 分别以 1 、2 、4 个字节为例进行内存的读写。
数组是内存的实现,数组和内存的物理结构完全一致,尤其是在读写1个字节的时候,当字节数超过 1 时,只能通过逐个字节来读取,下面是内存的读写过程
数组是我们学习的第一个数据结构,我们都知道数组的检索效率是比较快的,至于数组的检索效率为什么这么快并不是我们这篇文章讨论的重点。
栈和队列
我们上面提到数组是内存的一种实现,使用数组能够使编程更加高效,下面我们就来认识一下其他数据结构,通过这些数据结构也可以操作内存的读写。
栈
栈
(stack)
是一种很重要的数据结构,栈采用 LIFO
(Last In First Out)
即后入先出的方式对内存进行操作。它就像一个大的收纳箱,你可以往里面放相同类型的东西,比如书,最先放进收纳箱的书在最下面,最后放进收纳箱的书在最上面,如果你想拿书的话, 必须从最上面开始取,否则是无法取出最下面的书籍的。
栈的数据结构就是这样,你把书籍压入收纳箱的操作叫做压入
(push)
,你把书籍从收纳箱取出的操作叫做弹出
(pop)
,它的模型图大概是这样