专栏名称: 钱皓频道
从VC视角观察互联网新趋势,分析背后原因与影响的新媒体分析平台,已有80多万互联网从业者与投资人关注
目录
相关文章推荐
51好读  ›  专栏  ›  钱皓频道

人工智能的下一个技术风口与商业风口

钱皓频道  · 公众号  · 科技自媒体  · 2017-02-28 23:05

正文



来源:第四范式(ID:nextparadigm)


作为华人界首个国际人工智能协会AAAI Fellow、至今为止唯一的AAAI 华人执委,以及IEEE Fellow、AAAS Fellow、IAPR Fellow,杨强教授在专注学术研究的同时,也更关注如何让人工智能技术落地转化为生产力的问题。

作为第四范式首席科学家、范式大学的导师,杨强教授近日在第四范式公司内部进行了一场主题为“人工智能的下一个三年”的培训,深入浅出地分享了自己在人工智能产业推广上的经验,并预判了人工智能即将爆发的技术风口与商业风口。此前,杨强教授与第四范式曾提出人工智能的五个必要条件,为人工智能行业提供了权威的准入标准。

以下内容根据杨强教授主题演讲编写,略微有所删减。

一、AlphaGo为我们带来了什么

大家记得在2016年3月,AlphaGo横空出世对战李世乭,这对于人工智能的社会影响非常大。这里,我们问一下:AlphaGo到底为我们带来了什么?

在AlphaGo的搜索中,Deepmind团队引入了一个新概念——即用深度学习和强化学习的结合来做两种任务的判别,即来 判别 现在所在的棋盘是好是坏,同时来 预测 未来有利的走向。 讲到这里大家应该能看出AlphaGo的算法和未来商业模式的关联,即:通过对大数据的分析,让我们对“现在状态”有了一个靠谱的理解; 这个状态可以是棋盘、可以是足球运动中两队交锋的状态,也可以是当前营销的一个状态。同时,下围棋中的一步,可以理解成对未来走向的预判,在商业活动中,这可以是营销活动中的下一步。这里很重要的一点,是区分我们商业行为中的两个任务,即对现实的判断和对商业未来走向的预估。这两个任务同样重要,也同样都需要大数据的支持。 因为围棋是一个封闭式的游戏(即没有外界因素的干扰),为了得到更多的数据,AlphaGo也引入了自我博弈。 所谓自我博弈就是自己玩游戏,你会得到不断的反馈,然后来更新自己的策略 经过无数次这样的比赛,最后会得到一个好的策略,你的最终输出是一个行为的策略。所以AlphaGo 也告诉我们,在一个封闭场景中,可以用自我博弈的模拟方法得到更多的数据。

1. 从AlphaGo到人工智能的应用流程


我们如果沿着下围棋的步骤走,就要面对这些问题:你的人工智能算法的目标是什么?有没有数据?数据在哪里?问题的边界是否清晰?什么叫合理的走法、什么叫犯规的走法?你的特征在哪里?又如何得到这些特征?是否可以得到一个持续的反馈?这样的一个流程是AlphaGo设计团队所走过的路。不妨把这些步骤记下来,变成一个workflow,看看其他的领域是不是可以重复AlphaGo的成功。 比如,如果用AlphaGo治疗癌症,如何治疗呢?治疗癌症一般是用放射性来杀掉癌细胞,而每一个癌症患者需要的剂量、角度、频次可能都不一样,如果能把所有的这些信息都记录下来,再记录治疗结果,因为结果不是马上就知道的,而是经过一段时间才知道,这样就有了数据、有了特征、有了问题持续的反馈,并且有了非常清楚的目标,即在副作用最小的情况下杀死癌细胞。并且这个workflow是可以重复的。



2. AI的发展历史还有前30年,这些年的积累也很有用


刚刚我们说了AlphaGo的一路历程, 但我们对人工智能的理解不应该片面地认为人工智能就是机器学习。 人工智能的发展历史还有前30年,前30年是从50年代中一直发展到80年代中。这30年AI是在干什么呢?是在做人工输入的规则型的知识表达研究,以及基于这些规则的符号空间的推理和搜索。我认为,这个人工规则型的知识表达在AI的应用当中也是必不可少的,因为在众多领域当中还会碰到冷启动的问题,以及如何规范一个领域的边界的问题。这就是说,逻辑推理,逻辑知识表达,以及在符号空间的搜索的人工智能这个分支,在今后几年会和统计学习相结合,会大有发展。 这种发展会也涉及技术和商业两个层面。

二、AI的技术风口在哪?


我们大家会关心的一个问题, 是人工智能的技术在哪些方向可能会有大的突破。


1. 深度学习


首先,是深度学习会继续发展。这里的发展不仅是在层次的增加,还包括深度学习的可解释性、以及对深度学习所获的的结论的自我因果表达。

例如,如何把非结构化的数据作为原始数据,训练出一个统计模型,再把这个模型变成某种知识的表达——这是一种表示学习。这种技术对于非结构化数据,尤其对于自然语言里面的知识学习,是很有帮助的。另外,深度学习模型的结构设计是深度学习的一个难点。这些结构在今天都是非常需要由人来设计的。还有一个研究问题是如何让逻辑推理和深度学习一起工作,这样也可以增加深度学习的可解释性。比如,建立一个贝叶斯模型需要有很多的设计者的经验,到现在为止,基本上是由人来设定的。如果我们能从深度学习的学习过程中衍生出一个贝叶斯模型,那么,学习、解释和推理就可以统一起来了。

2. 迁移学习


迁移学习也是我和戴文渊(第四范式创始人、首席执行官)一直在做的工作。给定一个深度学习的网络,比如一个encoder网络和一个decoder网络,我们可以看它学习和迁移的过程,作为新的数据来训练另外一个可解释的模型,也可以作为一个新的迁移学习算法的输出。即一个学生A在观察另外一个学生B学习,A的目的是学习B的学习方法,B就不断地在学新的领域,每换一个领域就为A提供一个新的数据样本,A利用这些新的样本就能学会在领域之间做迁移。所以这种过程叫做观察网络。有了这种一边学习、一边学习学习方法的算法,就可以在机器学习的过程中,学会迁移的方法。

3. 自然语言的表示学习与机器阅读


表示学习是当数据和任务没有直接相关时也可以学,一个重要的例子叫做self-taught learning,即我们通过很多supervise的数据、图像,可以学出一种最好的表达。用这个表达加上任务,就可以很快地学会这种知识表示。这时非结构化的数据就相当有用了。比如,给出一段话让机器去阅读,机器学习可以自动地发现一些值得关注的点。比如,给定一个文章中的实体和一个未知变量有这样的关系,然后用户可以问你这个未知变量是什么。能够达到这样的效果是因为深度模型已经具有了一种关注,这种关注是可以通过观众的学习(Attention)来表达。 其结果就好像我们一目了然地看了一本书,我们会把关键词和它们的关系抓取出来 。这实际上是利用类似人的一种直觉来进行学习。

4. 人机对话系统


应该说有一个领域已经发展到了临界点,就是人机对话系统领域。







请到「今天看啥」查看全文


推荐文章
六神磊磊读金庸  ·  为什么那么多人喜欢《爱江山更爱美人》?
8 年前
央视新闻  ·  早啊!新闻来了〔2017.10.31〕
7 年前