▲ 作者:Ilya Belopolski, Ryota Watanabe, Yuki Sato, Ryutaro Yoshimi, Minoru Kawamura, Soma Nagahama, Yilin Zhao, Sen Shao, Yuanjun Jin, Yoshihiro Kato, Yoshihiro Okamura, Xiao-Xiao Zhang, Yukako Fujishiro, Youtarou Takahashi, Max Hirschberger, Atsushi Tsukazaki, Kei S. Takahashi, Ching-Kai Chiu, Guoqing Chang, Masashi Kawasaki, Naoto Nagaosa & Yoshinori Tokura
▲ 链接:
https://www.nature.com/articles/s41586-024-08330-y
▲ 摘要:
由新兴的拓扑费米子控制的量子材料已经成为物理学的基石。石墨烯中的狄拉克费米子构成了摩尔量子物质的基础,磁拓扑绝缘体中的狄拉克费米子使得量子反常霍尔效应(QAH)的发现成为可能。相比之下,很少有材料的电磁响应是由涌现的Weyl费米子主导的。几乎所有已知的Weyl材料绝大多数都是金属,并且在很大程度上由无关的常规电子控制。
这项研究从理论上预测并在实验上观察了范德华(Cr,Bi)2Te3中的半金属Weyl铁磁体。在输运中,他们发现了一个大于0.5的记录体异常霍尔角以及非金属电导率,这是一个与传统铁磁体截然不同的制度。结合对称性分析,研究数据表明一个由两个Weyl点组成的半金属费米表面,具有超过体布里渊区线性尺寸75%的巨大分离,并且没有其他电子态。
研究者使用最先进的晶体合成技术,广泛调整电子结构,使其能够湮灭Weyl状态,并可视化一个独特的拓扑相图,显示广泛的陈氏绝缘,Weyl半金属和磁性半导体区域。研究者表示,对半金属Weyl铁磁体的观察为研究新的相关态和非线性现象以及零磁场Weyl自旋电子和光学器件提供了一条途径。
▲ Abstract:
Quantum materials governed by emergent topological fermions have become a cornerstone of physics. Dirac fermions in graphene form the basis for moiré quantum matter and Dirac fermions in magnetic topological insulators enabled the discovery of the quantum anomalous Hall (QAH) effect. By contrast, there are few materials whose electromagnetic response is dominated by emergent Weyl fermions. Nearly all known Weyl materials are overwhelmingly metallic and are largely governed by irrelevant, conventional electrons. Here we theoretically predict and experimentally observe a semimetallic Weyl ferromagnet in van der Waals(Cr,Bi)2Te3. In transport, we find a record bulk anomalous Hall angle of greater than 0.5 along with non-metallic conductivity, a regime that is strongly distinct from conventional ferromagnets. Together with symmetry analysis, our data suggest a semimetallic Fermi surface composed of two Weyl points, with a giant separation of more than 75% of the linear dimension of the bulk Brillouin zone, and no other electronic states. Using state-of-the-art crystal-synthesis techniques, we widely tune the electronic structure, allowing us to annihilate the Weyl state and visualize a unique topological phase diagram exhibiting broad Chern insulating, Weyl semimetallic and magnetic semiconducting regions. Our observation of a semimetallic Weyl ferromagnet offers an avenue towards new correlated states and nonlinear phenomena, as well as zero-magnetic-field Weyl spintronic and optical devices.