# 评论者所在城市分布可视化 defcity_distribution(cityName): city_list = list(set(cityName)) city_dict = {city_list[i]:0for i in range(len(city_list))} for i in range(len(city_list)): city_dict[city_list[i]] = cityName.count(city_list[i]) # 根据数量(字典的键值)排序 sort_dict = sorted(city_dict.items(), key=lambda d: d[1], reverse=True) city_name = [] city_num = [] for i in range(len(sort_dict)): city_name.append(sort_dict[i][0]) city_num.append(sort_dict[i][1])
import random from pyecharts import Bar bar = Bar("评论者城市分布") bar.add("", city_name, city_num, is_label_show=True, is_datazoom_show=True) bar.render("H:\PyCoding\spider_maoyan\picture\city_bar.html")
# 每日评论总数可视化分析 deftime_num_visualization(time): from pyecharts import Line time_list = list(set(time)) time_dict = {time_list[i]: 0for i in range(len(time_list))} time_num = [] for i in range(len(time_list)): time_dict[time_list[i]] = time.count(time_list[i]) # 根据数量(字典的键值)排序 sort_dict = sorted(time_dict.items(), key=lambda d: d[0], reverse=False) time_name = [] time_num = [] print(sort_dict) for i in range(len(sort_dict)): time_name.append(sort_dict[i][0]) time_num.append(sort_dict[i][1])
# 评论者猫眼等级、评分可视化 deflevel_score_visualization(userLevel,score): from pyecharts import Pie userLevel_list = list(set(userLevel)) userLevel_num = [] for i in range(len(userLevel_list)): userLevel_num.append(userLevel.count(userLevel_list[i]))
score_list = list(set(score)) score_num = [] for i in range(len(score_list)): score_num.append(score.count(score_list[i]))