专栏名称: AI掘金志
雷锋网《AI掘金志》频道:只做计算机视觉 +「安防、医学影像、零售」三大传统领域的深度采访报道。
目录
相关文章推荐
51好读  ›  专栏  ›  AI掘金志

每个时代都有创世者,谁创造了 AI 时代?

AI掘金志  · 公众号  ·  · 2019-09-11 12:00

正文


边缘化市场的创新,往往是逆常识的。

作者 | 张栋



科技行业的颠覆式创新,永远始于边缘化市场的异军突起。


从12年前英特尔原CEO保罗·欧德宁对智能手机芯片商业潜力的不屑,而将乔布斯拒之门外,再到游戏显卡市场常年被芯片巨头的战略忽视。边缘化市场于垄断者而言,是提高平均生成成本、拉低利润率的拖后腿业务,人人避而远之。


然而现实往往十分戏剧性,上述这两大不被主流玩家接纳的边缘化场景,诞生出了千亿级市值的高通和英伟达。他们从边缘演变至新主流的过程中,随之带来的,则是万亿级产值的移动帝国和智能浪潮。


既定领域强者愈强弱者愈弱的马太效应,已成为从业者潜意识里的商业铁律,但历史告诉我们: 边缘化市场的创新,往往是逆常识的。


1

1970年夏天,英特尔开发出了全世界第一款商用微处理器"4004"(即4位的4004处理器),这款处理器集成了 2250 个晶体管,能够处理 4bit 数据,每秒运算 6 万次,频率为 108KHZ。


4004的横空出世,被认为是拉开了微处理器时代的大幕。


1971年中,英特尔很快又从日本手表制造商精工集团手上接下了一个不小的订单,后者急需通过电子手表这一创新产品撬开消费类电子市场金矿的大门,需要更为强大的逻辑芯片作支撑。


强业务驱动下,英特尔加班加点埋头苦干,并于1972年初正式推出8位8008处理器 。


当所有人都为这两款震惊世界的芯片产品而欣喜、疯狂时,它们的主要研发者,年轻物理学家费德里科·法金并不满足,他又开始着手研发一款真正意义上的单芯片微处理器。

左为费德里科·法金,在展示4004

在法金的思维象限里,4004、8008虽然刚刚问世,但都是用于四芯片组,实际应用效果非常有限,如果单芯片微处理器能够面世,不但处理速度块且实用性较强。


1974年3月,也就是法金和他的团队着手产品设计仅9个月后,英特尔正式向公众推出了世界上第一款单芯片微处理器8080。


这款处理器一经发布便掀起了半导体界颠覆性革命,8位芯片运算速度达到每秒29万次,约为8008芯片的10倍。


次月,电脑发烧友埃德·罗伯茨拿到了 8080 微处理器的一些包含相关参赛的手写表格,同时着手打造一款置于芯片上的计算机

1975年1月,《大众电子学》封面刊登了由罗伯茨组装的个人电脑 Altair 8800 ,并在导语处印上了加粗的14个大字: 电脑走进千家万户的时代,来临了!


当保罗·艾伦在哈佛广场中央的报摊上看到《大众电子学》上印着 Altair 8800 图片时,他像是看到了新大陆,他踏着泥泞的积雪,一路小跑着来到比尔·盖茨在哈佛的寝室。


读完文章后,盖茨好像意识到了什么,他没有多想,便和艾伦参与到这场革命中,接下来的几个月时间里,两人开始疯狂为个人电脑编写软件。


同时,Altair 8800 也吸引了沃兹·尼亚克的注意,不同于罗伯茨,沃兹是专业的计算机工程师,当天晚上,他也在纸上画下了苹果I型电脑的雏形。


英特尔8080 微处理器的推出,让多少名不见经传的小人物看到了机会,转身一变,化身商业大佬。 而英特尔,也凭借三款微处理器组成的产品家族,尤其是最新的旗舰产品 8080 ,占据了市场领导地位。


在此后长达半个世纪里,随着微处理器成为数十个主要行业内成千上万种产品的核心大脑,英特尔也一步一步建立起了一个PC时代的崭新芯片王朝。


2

历史车轮滚滚前行,谁都不能永远年轻。


在英特尔与微软组成的wintel联盟如日中天几十年后,他们遗憾错失了规模较PC市场大得多的移动市场。


船大难掉头也好、后浪推前浪也罢,在时代面前,就移动市场而言,英特尔输了。

维特比,CDMA之父,高通创始人之一

移动时代的芯片领域则是高通的天下,又一位意大利技术天才维特比霸道登场。


维特比发明的码分多址技术CDMA,将现代数字通信的解码复杂度降到极低,而这也让他和他的公司化身这个时代的宠儿。


于移动芯片市场,英特尔曾经投入大量资金,尝试通过收购英飞凌无线事业部强力涉足,但是这种试水性投资并没有给前者带来太多惊喜,最终还是竹篮打水,落得一场空。


2016年6月27日,Marvell以6亿美元的现金收购了英特尔通信与应用处理器部门,获得了英特尔的XScale产品线。


这一举动也正式宣告英特尔真正放弃了移动市场。


就移动市场而言,其实英特尔也注意到了,但它的确回天乏术。


《创新者的窘境》中提到, 一个优秀企业的处境也可能很糟糕,而且企业越好,就越容易失败。


传闻,当年乔布斯推出第一代iPhone,首先找到的厂商便是英特尔,邀请他们生产iPhone手机芯片,因为他们有品牌保障、有成熟的生产线。


对于彼时的英特尔来说,这类手机芯片毫无技术障碍,最大的障碍就是价格。乔布斯给出的价格是每片10美元,而当时英特尔生产的CPU芯片,价格一般都在每片100美元以上。


为了一个前景不明的所谓的智能手机业务,腾出为英特尔超极本生产100美元芯片的生产线,去做10美元的手机芯片,换做大多数人,都是拒绝的。


苹果这趟车,英特尔算是没搭上,这一步,也让它彻底成了移动芯片市场的“看客”。


回忆当年的这一决策,时任英特尔CEO保罗-欧德宁在其宣布卸任的那一天也忏悔了过错,“英特尔的芯片原本可以出现在苹果手机中,但我当时回绝了苹果提出的交易”。


3

进入AI时代,To B市场的数据能力被强制唤醒,而它又开辟了芯片产业的又一个新战场。


AI芯片相比通用芯片在执行AI算法时效率更高、成本和功耗更低,它按技术路线可分为GPU、FPGA和ASIC,按功能可分为云端训练芯片、云端推断芯片和终端推断芯片。


在这个技术节点,英伟达来了。


英伟达CEO黄仁勋一直提到一个观点, 过去大多行业都是依赖摩尔定律来推动,但它太老了、太慢了,GPU才是全新的‘超级摩尔定律’,这也是整个行业千载难逢的机遇。


2015年前后,业界对于GPU摩尔定律视若无睹,那时候GPU的角色更多是显卡的核心部件,主要受众在游戏市场。


大多数人并没有意识到,一些变化正在潜移默化地发生着。


英伟达早在2007年年中就推出的、为释放GPU独特并行运算所打造的CUDA计算架构,和很早就提出基础理念但迟迟没有实质进展的人工智能走到了一起。


这两者互相成全, AI找到了一条通过算力暴力突破瓶颈的捷径;而GPU也终于在游戏和专业应用之外找到了一个新的市场、一个几乎无所不覆盖的新市场。


譬如安防市场,在这个领域,99%以上的数据是非结构化数据,安防大数据要走向深度应用首先必须解决的就是视频结构化问题。

早在2016年,海康威视便基于英伟达Jetson TX1发布最新双目智能摄像机产品,借助GPU的强大视觉计算性能和深度学习技术,在实现强大视频捕捉能力的同时满足了对海量计算的需求。







请到「今天看啥」查看全文


推荐文章
普象工业设计小站  ·  1毛钱的一张纸,被设计师玩出了花
8 年前
赛先生  ·  和赛先生一起工作|实习生招聘
8 年前
传感器技术  ·  革命性的电子技术——柔性电子
7 年前
电子工程专辑  ·  旋转编码器的编程思路
7 年前