专栏名称: Python入门与进阶
Python网络爬虫与数据挖掘、分析,尽在 datanami
目录
相关文章推荐
程序员的那些事  ·  百度:报案了 ·  2 天前  
码农翻身  ·  穷人需要投机,别迷信长期主义 ·  昨天  
OSC开源社区  ·  地表最强「开源版PS」——GIMP ... ·  4 天前  
OSC开源社区  ·  【直播预告】AiEditor:面向AI的下一 ... ·  4 天前  
51好读  ›  专栏  ›  Python入门与进阶

Python最佳代码实践:性能、内存和可用性!

Python入门与进阶  · 公众号  ·  · 2021-04-13 18:03

正文

作者:Satwik Kansal,译者:Prodesire
英文原文:https://dwz.cn/r4N2hvht
译文: https://zhuanlan.zhihu.com/p/28675694


遵循最佳做法的代码库在当今世界能得到高度评价。如果您的项目是开源的,这会是一个吸引优秀开发人员的方式。作为开发人员,您想要编写高效且优化的代码:

占用尽可能小的内存、执行地更快、看起来整洁、文档正确、遵循标准风格指南,并且易于被新开发者理解。

这里讨论的实践可能有助于您为开源组织做出贡献,向在线评审(Online Judge)提交解决方案,使用机器学习处理大量数据处理问题,或开发自己的项目。

实践 1:尽量不要对内存置之不理

一个简单的 Python 程序在内存上可能不会引起很多问题,但在高内存消耗的项目中内存使用变得至关重要。从一开始开发大项目时,合理使用内存是明智的。

与 C/C ++ 不同,Python 解释器会进行内存管理,用户无法自己控制。Python 中的内存管理涉及包含所有Python对象和数据结构的专用堆。

Python 内存管理器内部确保对这个专用堆的管理。当您创建对象时,Python 虚拟机处理所需的内存,并决定将其放置在内存布局中的特定位置。

然而,如何更好地了解事情的工作原理和不同的方法来做事情,可以帮助您最大限度地减少程序的内存使用量。

使用生成器来计算大量的结果

生成器可进行惰性计算。您可以通过遍历来使用它们:显示地使用 “for” 或者隐式地将其传递给任何方法或构造。

生成器可以返回多个项,就像返回一个列表 —— 不是一次返回所有,而是一个接一个地返回。生成器会暂停,直到下一个项被请求。在 这里 [1] 阅读更多关于 Python 生成器的内容。

对于大量数字/数据的处理,您可以使用像 Numpy 这样的库,它可以优雅地处理内存管理。 使用 format 而不是 “+” 来生成字符串 —— 在Python中,str 是不可变的,所以每对连接都必须将左、右字符串复制到新的字符串中。如果连接长度为10的四个字符串,则将复制(10+10) + ((10+10)+10) + (((10+10)+10)+10) = 90 个字符,而不是 40 字符。随着字符串数量和大小的增加,事情会变得越来越糟。Java 有时将一系列的连接转换为使用StringBuilder 来优化这种情况,但是 CPython 没有。因此,建议使用 .format 或 % 语法。如果您不能在 .format 和 % 之间选择,请查看 这个有趣的 StackOverflow 问题 [2] 定义 Python 类时使用槽(slots)。您可以通过将类中的 slots 设置为固定的属性名称列表,来告诉 Python 不要使用动态字典,只为一组固定的属性分配空间,从而消除了为每个对象使用一个字典的开销。在 这里 [3] 阅读更多关于槽的内容。 您可以通过使用内置的模块(如 resource 和 objgraph)来跟踪对象级别的内存使用情况。 在 Python 中管理内存泄漏可能是一项艰巨的任务,但幸运的是有一些工具(如 heapy)用于调试内存泄漏。Heapy 可以与 objgraph 一起使用来观察 diff 对象的分配随时间而增长。Heapy 可以显示哪些对象占用最多的内存。Objgraph 可以帮助您找到反向引用,以明白为什么它们不能被释放。您可以在 这里 [4] 阅读更多关于在Python中诊断内存泄漏的信息。

您可以在 这里 [5] 阅读由 Theano 的开发人员编写的关于 Python 内存管理的细节。

实践2:Python2 还是 Python3

当开始一个新的 Python 项目,或是只学习 Python,您可能会发现自己在选择 Python2 还是Python3 上十分纠结。这是一个广泛讨论的话题,在网上有许多观点和好的解释。

一方面,Python3 有一些很棒的新特性。另一方面,您可能希望使用仅支持 Python2 的包,而Python3 不能向后兼容。这意味着在 Python3.x 的解释器上运行 Python2 的代码可能会抛出错误。

不过,编写能同时跑在 Python2 和 Python3 解释器的代码是可能的。最常见的方法是使用_future、builtins 和 six 这样的软件包来维护一个简单、干净的 Python3.x 兼容代码库,能以最小的开销同时支持Python2 和 Python3。

python-future 是 Python2 和 Python3 之间的缺失兼容层。它提供 future 和 past 的包,能够向前或向后移植 Python2 和 Python3 的特性。它还带有 futurize 和 pasteurize,定制化的 2 到 3 基础的脚本,可以帮助您轻松地将 Py2 或 Py3 代码逐模块转换为干净的支持 Python2 和 Python3 的Py3 风格的代码库。

请查看 Ed Schofield 编写的超赞的 Python 2-3 兼容代码 手抄册 [6] (需翻墙)。如果相比阅读,您更喜欢视频,可以在 PyCon AU 2014 上找到他的演讲,“ 编写 2/3 兼容的代码 [7] ”(需翻墙)。

实践3:写出美丽的代码

分享代码是一个有益的尝试。无论什么动机,如果人们发现您的代码难以使用或理解,那么您的良好意图可能没有达到预期。几乎每个组织都遵循开发人员必须遵循的风格指南,以保持一致性、易于调试和协作。Python 的禅就像一个迷你风格的 Python 设计指南。主流的 Python 风格指南包括:

1. PEP-8 风格指南 2. Python 习语和效率 3. Google Python 风格指南

这些准则讨论了如何使用:空格、逗号和大括号,对象命名指南等。尽管它们在某些情况下可能发生冲突,但它们都具有相同的目标 —— “清晰、可读和可调试的代码标准”。

坚持一个指南,或遵循自己的,但不要试图跟随与广泛接受的标准大不相同的内容。

使用静态代码分析工具

有许多可用的开源工具能够使您的代码符合标准的风格指南和编写代码的最佳实践。

Pylint 是一个 Python 工具,用于检查模块的编码标准。Pylint 可以快速轻松地查看您的代码是否捕捉到了 PEP-8 的精髓,因此对其他潜在用户是“友好的”。

它还为您提供优良的指标和统计报告,可帮助您判断代码质量。您还可以通过创建自己的 .pylintrc 文件进行自定义和使用。

Pylint 不是唯一的选择 —— 还有其他工具,如 PyChecker,PyFlakes 以及像 pep8 和 flakes8 这样的包。

我的建议是使用 coala,一个统一的静态代码分析框架,旨在通过单个框架提供语言非特定的代码分析。Coala 支持我之前提到的所有的linting工具,并且是高度可定制的。

正确地文档说明代码

这方面对您的代码库的可用性和可读性至关重要。始终建议您尽可能广泛地文档说明您的代码,以便其他开发人员更容易了解您的代码。

功能的典型内联文档应包括:

该功能的一行概要。 如果适用的话,提供交互示例。这些可以让新开发人员参考,以快速了解功能的使用和预期的输出。您也可以使用 doctest 模块来确保这些示例的正确性(以测试方式运行)。请参阅 doctest 文档 中的示例。 参数文档(通常一行描述参数及其在函数中的作用) 返回类型的文档(除非您的函数没有返回任何内容!)

Sphinx 是广泛使用的用于生成和管理项目文档的工具。它提供了大量方便的功能,可以减少您编写标准文档的工作量。此外,您可以将文档推送到 Read the Docs,这是最常用的托管项目文档的方式。

Hitchiker's guide to Python for documentation [8] (笔者翻译成了中文版—— Python 最佳实践指南 [9] )包含一些有趣的信息,在文档说明代码时可能对您有用。

实践4:提高性能

多进程,而不是多线程

改进多任务代码的执行时间时,您可能希望利用 CPU 中的多核同时执行多个任务。产生几个线程并让它们并发执行可能看起来很直观,但是由于 Python 中的全局解释器锁,所有的线程都是在相同的核上轮流运行。







请到「今天看啥」查看全文