专栏名称: AI数据派
THU数据派"基于清华,放眼世界",以扎实的理工功底闯荡“数据江湖”。发布全球大数据资讯,定期组织线下活动,分享前沿产业动态。了解清华大数据,敬请关注姐妹号“数据派THU”。
目录
相关文章推荐
跟宇宙结婚  ·  “跟宇宙结婚”音频节目总目录 ·  2 天前  
跟宇宙结婚  ·  日常絮叨:上饿了么搜【跟宇宙结婚】领红包哟 ·  2 天前  
51好读  ›  专栏  ›  AI数据派

教育部印发《高校人工智能创新行动计划》, 500万AI人才缺口要补上!

AI数据派  · 公众号  ·  · 2018-04-11 07:30

正文

来源:新智元

本文共 1W+字 ,建议阅读 8分钟
教育部日前印发了《高等学校人工智能创新行动计划》,提出18项重点任务,并制定“三步走规划”:首先到2020年完善学科体系,到2025年取得一批有国际影响力的原创成果,到2030年让高校成为建设世界主要人工智能创新中心的核心力量,为我国跻身创新型国家前列提供科技支撑和人才保障。《行动计划》发布后将对高校和今后中国人工智能发展产生什么影响?本文带来专家权威解读。


据西安电子科技大学官网消息,4月2日,教育部印发了《高等学校人工智能创新行动计划》(下称《行动计划》)。这是教育领域落实国务院《新一代人工智能发展规划》的具体举措。


中国人工智能市场增长惊人,美中经济与安全评估委员会在其2017年年度报告中表示,“中国政府已承诺提供超过70亿美元的人工智能资金,深圳等城市准备为人工智能创业提供100万美元。”


中国科技公司百度、阿里巴巴和腾讯已成为“人工智能的全球领导者”。国家的大力推动下,中国在AI领域的学术界取得了很大的飞跃。中国最近人工智能相关论文发表数已经超越美国。


然而,中国在人工智能基础研究和创新,尤其是在AI高端人才储备方面,仍然存在很大缺口。根据高盛《全球人工智能产业分布》报告统计,2017年全球新兴人工智能项目中,中国占据51%,数量上已经超越美国。但全球人工智能人才储备方面,中国却只有5%左右。


中国人工智能人才缺口超过500万,如何应对?


“三步走”规划:到2030年高校成为建设世界主要人工智能创新中心的核心力量


《行动计划》本着强化基础研究,实现前瞻性基础研究和引领性原创成果的重大突破,进一步提升高校人工智能领域科技创新、人才培养和服务国家需求能力的精神,制定了从2020年到2025年再到2030年的“三步走”规划。其中,


  • 到 2020 年,基本完成适应新一代人工智能发展的高校科技创新体系和学科体系的优化布局,高校在新一代人工智能基础理论和关键技术研究等方面取得新突破,人才培养和科学研究的优势进一步提升,并推动人工智能技术广泛应用。


  • 到 2025 年,高校在新一代人工智能领域科技创新能力和人才培养质量显著提升,取得一批具有国际重要影响的原创成果,部分理论研究、创新技术与应用示范达到世界领先水平,有效支撑我国产业升级、经济转型和智能社会建设。


  • 到 2030 年,高校成为建设世界主要人工智能创新中心的核心力量和引领新一代人工智能发展的人才高地,为我国跻身创新型国家前列提供科技支撑和人才保障。


中国AI人才培养有优势:清华北大CSRanking全球前五


北京大学信息科学技术学院教授、计算机科学技术系系主任黄铁军表示:“中国在人工智能研究和人才培养方面是有相对优势的。北京大学2003年率先设置了“智能科学与技术”本科专业,建立了比较完善的人工智能人才培养体系。


计算机科学技术学科的一个特点是顶级学术会议是反映研究活跃度和研究水平的风向标,根据过去十年顶级会议论文发表的全球排名CSRanking,清华大学和北京大学的计算机科学都还未进入全球前十,但人工智能这个领域两校都位列全球前五。”




在基于顶级期刊出版物数量得出的排名CSRankings中,过去十年的“人工智能”学科,中国的清华、北大位列全球前五。值得一提,南京大学、浙江大学位列第9和第10。香港科技大学位于第5。来源:csrankings.org,数据最后更新时间是2018年4月



更广泛的“人工智能”,包括计算机视觉、机器学习&数据挖掘、自然语言处理等,清华位列全球第二、北京大学位列全球第五。来源同上。


不仅如此,《行动计划》明确提出“支持高校积极参加人工智能开源开放平台建设,鼓励高校对纳入平台的技术作为科研成果予以认定,并作为评价奖励的因素”,这是落实国家新一代人工智能发展规划四大原则中的“开源开放”原则的一种有效机制。


“据我所知,这是首次明确把开源贡献作为科技成果的一种形态,可以像论文、专利、标准等一样得到承认,这对加速人工智能领域的成果转化具有重大意义。”黄铁军教授说。


高等学校人工智能创新行动计划:18项重点任务


《行动计划》以坚持创新引领、坚持科教融合、坚持服务需求、坚持军民融合四大原则,提出了18大重点任务:


一、优化高校人工智能领域科技创新体系


1.加强新一代人工智能基础理论研究

2.推动新一代人工智能核心关键技术创新

3.加快建设人工智能科技创新基地

4.加快建设一流人才队伍和高水平创新团队

5.加强高水平科技智库建设

6.加大国际学术交流与合作力度


二、完善人工智能领域人才培养体系


7.完善学科布局

8.加强专业建设

9.加强教材建设

10.加强人才培养力度

11.开展普及教育

12.支持创新创业

13.加强国际交流与合作


三、推动高校人工智能领域科技成果转化与示范应用


14.加强重点领域应用

15.推进智能教育发展

16.推动军民深度融合

17.鼓励创新联盟建设和资源开放共享

18.支持地方和区域创新发展


西安电子科技大学教授、博士生导师,智能感知与图像理解教育部重点实验室主任焦李成在接受新智元采访时表示,在《行动计划》中的18项重点任务中,有两点最值得期待,一是完善学科布局;二是加快建设一流人才队伍和高水平创新团队。


“本次《行动计划》立足实际、高屋建瓴、极具指导意义。”焦李成教授说:“人工智能学科发展首先要做的就是学科布局,设立人工智能领域一级学科、加大‘双一流’投入这些举措对学科长远发展有着积极深远的意义。”


“我国人工智能领域高端专家人才相对稀少,人才依然是我国人工智能发展的主要瓶颈,发展人工智能产业、扩大我国在人工智能领域的国际影响力需要大量智力支撑,一流人才队伍建设工作是人工智能发展的根基所在。”


同时,焦教授也指出,《行动计划》提出的“三步走”战略在时间和目标上设置基本合理,但在具体实施过程中,“到2025年,要取得一批具有国际重要影响的原创成果,部分理论研究、创新技术与应用示范达到世界领先水平”,需要国内全体人工智能领域专家、学者的共同努力,在六、七年的时间内要达到世界领先水平不是件容易的事。



目前,中国的人工智能人才在总量上与美国有差距,但发展前景看好。2017年底领英发布的《全球AI领域人才报告》显示,中国资深人工智能人才数量与美国差距显著,10年从业者仅占38.7%,而美国的10年以上AI从业人员比例达到全球最高的71.5%。但中国人工智能人才也有其优势,即高学历者众多,其中研究生及以上学历的人才占比达到62.1%,领先于美国的56.5%。这意味着中国人工智能人才虽然比较年轻缺少经验,但学历高、接受能力强,后续潜力不容小觑。


更多高校人工智能学院或出现:学科体系优化第一步


就在今年3月初, 南京大学成立人工智能学院,由周志华教授领导 ,引发业内强烈反响。在人工智能热潮下,中国科学院大学、西安电子科技大学、重庆邮电大学和上海交通大学都成立了人工智能学院/研究院。


本次《行动计划》的提出,或许会推动更多高校成立人工智能学院。焦李成教授表示,设立人工智能一级学科、在高校建立人工智能学院是学科体系优化的第一步,设立一级学科和单独设立学院有助于精准布点人工智能相关专业以满足国家和区域的产业需求,有助于加快建设一流人才队伍和高水平创新团队、建设人工智能科技创新基地,从而进一步推动国际学术交流与合作、专业和教材建设,提高人才培养质量,推动科技成果转化。


“在优化高校AI科技创新体系方面,关键是要解放思想、打破藩篱,坚持问题导向,改革科研绩效分配制度,优化机制体制,激发教师内在活力。”


《行动计划》中提到:积极开展“新工科”研究与实践,重视人工智能与计算机、控制、数学、统计学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合。


焦李成教授表示,“新工科”一方面是要设置和发展一批新兴工科专业,另一方面是要推动现有工科专业的改革创新。新工科建设和发展以新经济、新产业为背景,需要树立创新型、综合化、全周期工程教育“新理念”,构建新兴工科和传统工科相结合的学科专业“新结构”,探索实施工程教育人才培养的“新模式”,打造具有国际竞争力的工程教育“新质量”,建立完善中国特色工程教育的“新体系”。


而人工智能与传统工科专业交叉融合,就是“构建新兴工科和传统工科相结合的学科专业‘新结构’”。“学科教育方面,目前在其他多个一级学科中已经隐藏着和散落着许多智能专业教学和科研活动,这其中的问题不是无法交叉融合,而是高开低走、碎片化、低水平重复;”焦教授告诉新智元:“产业发展方面,目前智能制造、智能城市、智能金融、智能司法和国防安全等都是人工智能与其他专业的交叉融合,故而人工智能与多个专业的交叉融合是社会发展使然,操作起来不会有困难。”


附:教育部《高等学校人工智能创新行动计划》全文


高等学校人工智能创新行动计划


人工智能的迅速发展将深刻改变人类社会生活、改变世界。为贯彻落实《国务院关于印发新一代人工智能发展规划的通知》(国发〔2017〕35号)和2017年全国高校科技工作会议精神,引导高校瞄准世界科技前沿,强化基础研究,实现前瞻性基础研究和引领性原创成果的重大突破,进一步提升高校人工智能领域科技创新、人才培养和服务国家需求的能力,特制定本行动计划。


一、总体要求


(一)基本态势


随着互联网、大数据、云计算和物联网等技术不断发展,人工智能正引发可产生链式反应的科学突破、催生一批颠覆性技术,加速培育经济发展新动能、塑造新型产业体系,引领新一轮科技革命和产业变革。我国正处于全面建成小康社会的决胜阶段,人民对美好生活的需要和经济高质量发展的要求,为我国人工智能发展和应用带来广阔前景。


人工智能具有技术属性和社会属性高度融合的特点,是经济发展新引擎、社会发展加速器。大数据驱动的视觉分析、自然语言理解和语音识别等人工智能能力迅速提高,商业智能对话和推荐、自动驾驶、智能穿戴设备、语言翻译、自动导航、新经济预测等正快速进入实用阶段,人工智能技术正在渗透并重构生产、分配、交换、消费等经济活动环节,形成从宏观到微观各领域的智能化新需求、新产品、新技术、新业态,改变人类生活方式甚至社会结构,实现社会生产力的整体跃升。同时,加快人工智能在教育领域的创新应用,利用智能技术支撑人才培养模式的创新、教学方法的改革、教育治理能力的提升,构建智能化、网络化、个性化、终身化的教育体系,是推进教育均衡发展、促进教育公平、提高教育质量的重要手段,是实现教育现代化不可或缺的动力和支撑。


高校处于科技第一生产力、人才第一资源、创新第一动力的结合点,在人工智能基础理论和自然语言理解、计算机视觉、多媒体、机器人等关键技术研究及应用方面具有鲜明特色,在人才培养和学科发展等方面具有坚实基础。面对新一代人工智能发展的机遇,高校要进一步强化基础研究、学科发展和人才培养方面的优势,要进一步加强应用基础研究和共性关键技术突破,要不断推动人工智能与实体经济深度融合、为经济发展培育新动能,不断推动人工智能与人民需求深度融合、为改善民生提供新途径,不断推动人工智能与教育深度融合、为教育变革提供新方式,从而引领我国人工智能领域科技创新、人才培养和技术应用示范,带动我国人工智能总体实力的提升。


(二)指导思想


全面贯彻党的十九大精神,以习近平新时代中国特色社会主义思想为指导,贯彻创新、协调、绿色、开放、共享的新发展理念,围绕科教兴国、人才强国、创新驱动发展、军民融合等战略实施,加快构建高校新一代人工智能领域人才培养体系和科技创新体系,全面提升高校人工智能领域人才培养、科学研究、社会服务、文化传承创新、国际交流合作的能力,推动人工智能学科建设、人才培养、理论创新、技术突破和应用示范全方位发展,为我国构筑人工智能发展先发优势和建设教育强国、科技强国、智能社会提供战略支撑。


(三)基本原则


坚持创新引领。把创新引领摆在高校人工智能发展的核心位置,准确把握全球人工智能发展态势,进一步优化高校人工智能领域科技创新体系,把高校建成全球人工智能科技创新的重要策源地。


坚持科教融合。全面落实立德树人根本任务,牢牢抓住提高人才培养能力这个核心点,推动人才培养、学科建设、科学研究相互融合;发挥科研育人在高等教育内涵式发展和高质量人才培养中的重要作用,并通过创新型人才的培养不断提升国家自主创新水平,构筑持续创新发展的优势。


坚持服务需求。深化体制机制改革,强化高校与地方政府、企业、科研院所之间的合作,加快人工智能领域科技成果在重点行业与区域的转化应用,提升高校服务国家重大战略、服务区域创新发展、服务经济转型升级、服务保障民生的能力。


坚持军民融合。准确把握军民融合深度发展方向、发展规律和发展重点,发挥高校在基础研究、人才培养上的优势和学科综合的特点,主动融入国家军民融合体系,不断推进军民技术双向转移和转化应用。


(四)主要目标


到2020年,基本完成适应新一代人工智能发展的高校科技创新体系和学科体系的优化布局,高校在新一代人工智能基础理论和关键技术研究等方面取得新突破,人才培养和科学研究的优势进一步提升,并推动人工智能技术广泛应用。


到2025年,高校在新一代人工智能领域科技创新能力和人才培养质量显著提升,取得一批具有国际重要影响的原创成果,部分理论研究、创新技术与应用示范达到世界领先水平,有效支撑我国产业升级、经济转型和智能社会建设。

到2030年,高校成为建设世界主要人工智能创新中心的核心力量和引领新一代人工智能发展的人才高地,为我国跻身创新型国家前列提供科技支撑和人才保障。


二、重点任务


(一)优化高校人工智能领域科技创新体系


1.加强新一代人工智能基础理论研究。聚焦人工智能重大科学前沿问题,促进人工智能、脑科学、认知科学和心理学等领域深度交叉融合,重点推进大数据智能、跨媒体感知计算、混合增强智能、群体智能、自主协同控制与优化决策、高级机器学习、类脑智能计算和量子智能计算等基础理论研究,为人工智能范式变革提供理论支撑,为新一代人工智能重大理论创新打下坚实基础。


2.推动新一代人工智能核心关键技术创新。围绕新一代人工智能关键算法、硬件和系统等,加快机器学习、计算机视觉、知识计算、深度推理、群智计算、混合智能、无人系统、虚拟现实、自然语言理解、智能芯片等核心关键技术研究,在类脑智能、自主智能、混合智能和群体智能等领域取得重大突破,形成新一代人工智能技术体系;在核心算法和数据、硬件基础上,以提升跨媒体推理能力、群智智能分析能力、混合智能增强能力、自主运动体执行能力、人机交互能力为重点,构建算法和芯片协同、软件和硬件协同、终端和云端协同的人工智能标准化、开源化和成熟化的服务支撑能力。


3.加快建设人工智能科技创新基地。围绕人工智能领域基础理论、核心关键共性技术和公共支撑平台等方面需求,加快建设教育部前沿科学中心、教育部重点实验室、教育部工程研究中心等创新基地;以交叉前沿突破和国家区域发展等重大需求为导向,促进高校、科研院所和企业等创新主体协同互动,建设协同创新中心;加快国家实验室、国家重点实验室、国家技术创新中心、国家工程研究中心、国家重大科技基础设施等各类国家级创新基地培育;鼓励高校建设新型科研组织机构,开展跨学科研究。


4.加快建设一流人才队伍和高水平创新团队。支持高校承担国家重大科技任务,培养、造就一批具有国际声誉的战略科技人才、科技领军人才;支持高校组建一批人工智能、脑科学和认知科学等跨学科、综合交叉的创新团队和创新研究群体;支持高校依托国家“千人计划”“万人计划”和“长江学者奖励计划”等大力培养引进优秀青年骨干人才;加强对从事基础性研究、公益性研究的拔尖人才和优秀创新团队的稳定支持。


5.加强高水平科技智库建设。鼓励、支持高校牵头或参与建设人工智能领域战略研究基地,围绕人工智能发展对教育、经济、就业、法律、国家安全等重大、热点、前瞻性问题开展战略研究与政策研究,形成若干高水平新型科技智库。


6.加大国际学术交流与合作力度。支持高校新建一批人工智能领域“111引智基地”和国际合作联合实验室,培育国际大科学计划和大科学工程,加快引进国际知名学者参与学科建设和科学研究;支持举办高层次人工智能国际学术会议,推动我国学者担任相关国际学术组织重要职务,提升国际影响力;支持我国学者积极参与人工智能相关国际规则制定,适时提出“中国倡议”和“中国标准”。


专栏1:前沿创新


1.强化人工智能基础理论研究。在自主学习、直觉认知和综合推理等方面取得重要进展,突破逻辑推导、知识驱动和从经验中学习等人工智能方法的难点问题,建立解释性强、数据依赖灵活、泛化迁移能力强的人工智能理论新模型和方法,形成从数据到知识、从知识到决策的能力。


2.加强人工智能核心关键技术研究。围绕知识计算、跨媒体分析推理、群体智能、混合增强智能、自主无人系统等核心技术攻关,推进人工智能专用芯片、软件和硬件之间的协同,形成终端和云端之间协同的人工智能服务能力。


3.促进人工智能的技术体系构建。在类脑智能、自主智能、混合智能和群体智能等核心技术取得突破的基础上,重点提升跨媒体推理能力、群智智能分析能力、混合智能增强能力、自主运动体执行能力、人机交互能力,促进以算法为核心、以数据和硬件为基础的稳定成熟的人工智能技术体系的构建。


4.加强人工智能协同创新和战略研究。在人工智能基础理论、多元空间安全、知识服务、互联网金融、减灾防灾、社会精细管理、健康保障与疾病防护、科学化脱贫等方面推进协同创新;建设若干高水平人工智能科技智库,支持开展重大科技战略与政策研究,为社会经济发展提供理论支撑和战略指导,回应社会热点关切。


(二)完善人工智能领域人才培养体系


7.完善学科布局。加强人工智能与计算机、控制、量子、神经和认知科学以及数学、心理学、经济学、法学、社会学等相关学科的交叉融合。支持高校在计算机科学与技术学科设置人工智能学科方向,推进人工智能领域一级学科建设,完善人工智能基础理论、计算机视觉与模式识别、数据分析与机器学习、自然语言处理、知识工程、智能系统等相关方向建设。支持高校在“双一流”建设中,加大对人工智能领域相关学科的投入,促进相关交叉学科发展。


8.加强专业建设。加快实施“卓越工程师教育培养计划”(2.0版),推进一流专业、一流本科、一流人才建设。根据人工智能理论和技术具有普适性、迁移性和渗透性的特点,主动结合学生的学习兴趣和社会需求,积极开展“新工科”研究与实践,重视人工智能与计算机、控制、数学、统计学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合,探索“人工智能+X”的人才培养模式。鼓励对计算机专业类的智能科学与技术、数据科学与大数据技术等专业进行调整和整合,对照国家和区域产业需求布点人工智能相关专业。


9.加强教材建设。加快人工智能领域科技成果和资源向教育教学转化,推动人工智能重要方向的教材和在线开放课程建设,特别是人工智能基础、机器学习、神经网络、模式识别、计算机视觉、知识工程、自然语言处理等主干课程的建设,推动编写一批具有国际一流水平的本科生、研究生教材和国家级精品在线开放课程;将人工智能纳入大学计算机基础教学内容。


10.加强人才培养力度。完善人工智能领域多主体协同育人机制。深化产学合作协同育人,推广实施人工智能领域产学合作协同育人项目,以产业和技术发展的最新成果推动人才培养改革。支持建立人工智能领域“新工科”建设产学研联盟,建设一批集教育、培训及研究于一体的区域共享型人才培养实践平台;积极搭建人工智能领域教师挂职锻炼、产学研合作等工程能力训练平台。推动高校教师与行业人才双向交流机制。鼓励有条件的高校建立人工智能学院、人工智能研究院或人工智能交叉研究中心,推动科教结合、产教融合协同育人的模式创新,多渠道培养人工智能领域创新创业人才;引导高校通过增量支持和存量调整,稳步增加相关学科专业招生规模、合理确定层次结构,加大人工智能领域人才培养力度。


11.开展普及教育。鼓励、支持高校相关教学、科研资源对外开放,建立面向青少年和社会公众的人工智能科普公共服务平台,积极参与科普工作;支持高校教师参与中小学人工智能普及教育及相关研究工作;在教师职前培养和在职培训中设置人工智能相关知识和技能课程,培养教师实施智能教育能力;在高校非学历继续教育培训中设置人工智能课程。


12.支持创新创业。鼓励国家大学科技园、创新创业基地等开展人工智能领域创新创业项目;认定一批高等学校双创示范园,支持高校师生开展人工智能领域创新创业活动;在中国“互联网+”大学生创新创业大赛中设立人工智能方面的赛项,积极推动全国青少年科技创新大赛、挑战杯全国大学生课外学术科技作品竞赛等开展多层次、多类型的人工智能科技竞赛活动。







请到「今天看啥」查看全文


推荐文章
跟宇宙结婚  ·  “跟宇宙结婚”音频节目总目录
2 天前
OSC开源社区  ·  100 行 C 代码终端打印树形结构
8 年前
古玩元素网  ·  中国天价写实油画,大开眼界!
7 年前