专栏名称: Python开发者
人生苦短,我用 Python。伯乐在线旗下账号「Python开发者」分享 Python 相关的技术文章、工具资源、精选课程、热点资讯等。
目录
相关文章推荐
Python爱好者社区  ·  DeepSeek满血版,来了! ·  2 天前  
Python爱好者社区  ·  DeepSeek 被放弃了,阿里牛逼! ·  昨天  
Python开发者  ·  实测满血版 DeepSeek!学习 ... ·  昨天  
Python开发者  ·  清北 DeepSeek ... ·  2 天前  
Python开发者  ·  清华大学:DeepSeek + ... ·  3 天前  
51好读  ›  专栏  ›  Python开发者

从“猿”到“金刚”,机器学习让你在职业生涯超进化!

Python开发者  · 公众号  · Python  · 2017-07-25 20:06

正文

立即参团

原价 ¥899.00

50人以上  ¥499.00

100人以上 ¥399.00


目前已达最低价

文末加客服二维码参团


课程名称

《机器学习升级版Ⅵ》


主讲老师

邹博, 小象学院独家签约  中国科学院副教授

中国科学院 副教授 ,北京某气象公司首席科学家;研究方向机器学习、数据挖掘、计算几何,应用于大型气象设备的图像与文本挖掘、股票交易与预测、传统农资产品价格预测和决策等领域。


升级内容

本课程特点是 从数学层面推导最经典的机器学习算法,以及每种算法的示例和代码实现(Python)、如何做算法的参数调试、以实际应用案例分析各种算法的选择等。


学习收益

1.每个算法模块按照“ 原理讲解→分析数据→自己动手实现→特征与调参 ”的顺序,“原理加实践,顶天立地”。

2. 拒绝简单的“调包” ——增加3次“机器学习的角度看数学”和3次“Python数据清洗和特征提取”,提升学习深度、降低学习坡度。

3.增加网络爬虫的原理和编写,从获取数据开始,重视将实践问题转换成实际模型的能力,分享工作中的 实际案例或Kaggle案例 广告销量分析、环境数据异常检测和分析、数字图像手写体识别、Titanic乘客存活率预测、用户-电影推荐、真实新闻组数据主题分析、中文分词、股票数据特征分析 等。

4.强化 矩阵运算、概率论、数理统计 的知识运用,掌握机器学习根本。

5.阐述机器学习原理,提供配套源码和数据;确保 “懂推导,会实现”

6.删去过于晦涩的公式推导,代之以 直观解释 ,增强 感性理解

7.对比不同的特征选择带来的预测效果差异。

8.重视 项目实践 (如工业实践、Kaggle等),重视落地。思考不同算法之间的区别和联系,提高在实际工作中 选择算法的能力

9.涉及和讲解的部分 Python库 有:Numpy、Scipy、matplotlib、Pandas、scikit-learn、XGBoost、libSVM、LDA、Gensim、NLTK、HMMLearn,涉及的其他“小”库在课程的实践环节会逐一讲解。


开课时间

2017年8月2日


学习方式

在线直播 ,共24次

每周 3 次(周一、三、五晚20:00-22:00)

直播后提供录制 回放 视频

可在线 反复 观看,有效期 1


课程大纲


第一课:机器学习的数学基础1 - 数学分析

1.  机器学习的一般方法和横向比较

2.  数学是有用的:以SVD为例

3.  机器学习的角度看数学

4.  复习数学分析

5.  直观解释常数e

6.  导数/梯度

7.  随机梯度下降

8.  Taylor展式的落地应用

9.  gini系数

10. 凸函数

11. Jensen不等式

12. 组合数与信息熵的关系

第二课:机器学习的数学基础2 - 概率论与贝叶斯先验

1.  概率论基础

2.  古典概型

3.  贝叶斯公式

4.  先验分布/后验分布/共轭分布

5.  常见概率分布

6.  泊松分布和指数分布的物理意义

7.  协方差(矩阵)和相关系数

8.  独立和不相关

9.  大数定律和中心极限定理的实践意义

10.  深刻理解最大似然估计MLE和最大后验估计MAP

11.  过拟合的数学原理与解决方案

第三课:机器学习的数学基础3 - 矩阵和线性代数

1.  线性代数在数学科学中的地位

2.  马尔科夫模型

3.  矩阵乘法的直观表达

4.  状态转移矩阵

5.  矩阵和向量组

6.  特征向量的思考和实践计算

7.  QR分解

8.  对称阵、正交阵、正定阵

9.  数据白化及其应用

10.  向量对向量求导

11.  标量对向量求导

12.  标量对矩阵求导

第四课:Python基础1 - Python及其数学库

1.  解释器Python2.7与IDE:Anaconda/Pycharm

2.  Python基础:列表/元组/字典/类/文件

3.  Taylor展式的代码实现

4.  numpy/scipy/matplotlib/panda的介绍和典型使用

5.  多元高斯分布

6.  泊松分布、幂律分布

7.  典型图像处理

8.  蝴蝶效应

9.  分形与可视化

第五课:Python基础2 - 机器学习库

1.  scikit-learn的介绍和典型使用

2.  损失函数的绘制

3.  多种数学曲线

4.  多项式拟合

5.  快速傅里叶变换FFT

6.  奇异值分解SVD

7.  Soble/Prewitt/Laplacian算子与卷积网络

8.  卷积与(指数)移动平均线

9.  股票数据分析

第六课:Python基础3 - 数据清洗和特征选择

1.  实际生产问题中算法和特征的关系

2.  股票数据的特征提取和应用

3.  一致性检验

4.  缺失数据的处理

5.  环境数据异常检测和分析

6.  模糊数据查询和数据校正方法、算法、应用

7.  朴素贝叶斯用于鸢尾花数据

8.  GaussianNB/MultinomialNB/BernoulliNB

9.  朴素贝叶斯用于18000+篇/Sogou新闻文本的分类

第七课: 回归

1.  线性回归

2.  Logistic/Softmax回归

3.  广义线性回归

4.  L1/L2正则化

5.  Ridge与LASSO

6.  Elastic Net

7.  梯度下降算法:BGD与SGD

8.  特征选择与过拟合

第八课:Logistic回归

1.  Sigmoid函数的直观解释

2.  Softmax回归的概念源头

3.  Logistic/Softmax回归

4.  最大熵模型

5.  K-L散度

6.  损失函数

7.  Softmax回归的实现与调参

第九课:回归实践

1.  机器学习sklearn库介绍

2.  线性回归代码实现和调参

3.  Softmax回归代码实现和调参

4.  Ridge回归/LASSO/Elastic Net

5.  Logistic/Softmax回归

6.  广告投入与销售额回归分析

7.  鸢尾花数据集的分类

8.  交叉验证

9.  数据可视化

第十课:决策树和随机森林

1.  熵、联合熵、条件熵、KL散度、互信息

2.  最大似然估计与最大熵模型

3.  ID3、C4.5、CART详解

4.  决策树的正则化

5.  预剪枝和后剪枝

6.  Bagging

7.  随机森林

8.  不平衡数据集的处理

9.  利用随机森林做特征选择

10. 使用随机森林计算样本相似度

11. 数据异常值检测

第十一课:随机森林实践

1.  随机森林与特征选择

2.  决策树应用于回归

3.  多标记的决策树回归

4.  决策树和随机森林的可视化

5.  葡萄酒数据集的决策树/随机森林分类

6.  波士顿房价预测

第十二课:提升

1.  提升为什么有效

2.  梯度提升决策树GBDT

3.  XGBoost算法详解

4.  Adaboost算法

5.  加法模型与指数损失

第十三课:提升实践

1.  Adaboost用于蘑菇数据分类

2. Adaboost与随机森林的比较

3.  XGBoost库介绍

4.  Taylor展式与学习算法

5.  KAGGLE简介

6.  泰坦尼克乘客存活率估计

第十四课:SVM

1.  线性可分支持向量机

2.  软间隔的改进

3.  损失函数的理解

4.  核函数的原理和选择

5.  SMO算法

6.  支持向量回归SVR

第十五课:SVM实践

1.  libSVM代码库介绍

2.  原始数据和特征提取

3.  葡萄酒数据分类

4.  数字图像的手写体识别

5.  SVR用于时间序列曲线预测

6.  SVM、Logistic回归、随机森林三者的横向比较

第十六课:聚类(上)

1.  各种相似度度量及其相互关系

2.  Jaccard相似度和准确率、召回率

3.  Pearson相关系数与余弦相似度

4.  K-means与K-Medoids及变种

5.  AP算法(Sci07)/LPA算法及其应用

第十七课:聚类(下)

1.  密度聚类DBSCAN/DensityPeak(Sci14)







请到「今天看啥」查看全文