聚焦并解读再生医学、组织工程、生物材料等领域的最新进展,为医工交叉领域的研究人员提供交流合作平台。 |
编者按
在医疗技术革命的浪潮中,生物3D打印正突破传统治疗范式,开启从手术切除到再生医学的颠覆性变革。 Bio-Design and Manufacturing(BDM) 期刊全新推出「 BDM学科地理前沿 」栏目,以国家为维度深度解析医工交叉领域创新版图,以一篇文章透视一国科研实力。
继日本、以色列、英国&爱尔兰之后,本栏目第四篇聚焦 中国 ,由 杨华勇院士 与 贺永 教授领衔, 31 所高校机构、55位学者历时一年合作撰写而成的主题综述 3D printing for tissue/organ regeneration in China 上线。
引 用本文 (点击最下方阅读原文可下载PDF)
He C, He J, Wu C, et al., 2025. 3D printing for tissue/organ regeneration in China. Bio-des Manuf (Early Access). https://doi.org/10.1631/bdm.2400309
硬核拆解:3D生物打印的核心原理和演化轨迹
面向组织再生的生物3D打印主要围绕可降解材料和载细胞生物墨水展开。其过程可划分为四个阶段。
第一阶段 :制备无细胞生物支架,利用物理化学因素加速组织修复
第二阶段 :制造载细胞支架,以更准确地模拟生物活动和功能
第三阶段 :实现特定生物组织的部分重建,并恢复其基本生物功能
第四阶段 :器官重建并实现其完整的生物功能,例如人造心脏和肝脏等
此外,这一技术演变还涵盖一个 辅助阶段 :即利用器官芯片或类器官的体外组织模型来模拟生物功能,从而促进对生理过程的更深入理解并优化组织再生策略。
图1 面向组织再生的生物3D打印演变过程
当前,我们正处于从第二阶段向第三阶段的过渡时期,这一飞跃性的进展要求对生物组织的多功能性、高精度以及自组织特性进行深入的探索与研究。人体的各种组织/器官各自具备独特的生物学功能与生理特性,例如,肌肉骨骼系统强调组织的强度与灵活性,神经系统则优先考虑电信号的准确与快速传输,而循环系统则侧重于密封性与通畅性。因此,在追求统一的顶层设计之外,我们还需要针对特定组织的独特特征进行个性化的设计,以满足其特定的需求。这要求临床医生、工程师以及材料科学家等整个研究链条上的各方密切合作,共同推动生物打印的发展。
需要明确的是,本综述旨在探讨3D打印在组织再生领域的进展。因此涵盖的范围仅限于能够促进组织再生的可降解材料以及载细胞生物墨水的3D打印。不可降解材料则不纳入本综述的讨论范畴。
前沿洞见:如何跨越「可移植器官制造」的复杂挑战
从组织工程到器官工程:
在自然组织中,其复杂的结构特征、生化信号的精确传递以及细胞群系之间的密切协作共同驱动了生物组织的自发整合,从而有效地执行了各种生命活动。这种复杂性使得在体外重建具有完整功能性的生物组织/器官成为一项极具挑战性的任务。目前,组织工程的研究主要集中在组织修复阶段,即通过向体内植入细胞外基质和/或细胞来刺激周围组织的再生和修复。然而,这些植入的组织工程支架通常仅具备有限的生物功能,主要依赖于其物理和化学特性,如表面结构和生长因子,来诱导周围细胞的生长、分化和迁移。
在追求制造“可移植器官”的过程中,我们面临着三个核心挑战: 精确制造、稳定移植以及长期存活 。首先,自然生物经过优化,能以最小消耗实现最大效益。当前3D生物打印在模拟仿生结构上有局限,尤其在材料成分、多层结构和几何形状的精确复制方面。其次,软组织重建面临固定和缝合挑战,需要平衡整体韧性和局部柔软性。最后,神经血管化对3D打印人造组织的长期存活至关重要,多级血管网络系统可提供必要营养和氧气,防止细胞凋亡,促进长期存活。神经调控机制可优化再生微环境,在促进组织再生与恢复中也扮演着不可或缺的角色。神经血管化是组织的基本生理需求,也是提升人造组织的整体性能与功能恢复效果的关键因素。
图2 可移植器官制造面临的挑战
从科学研究到临床应用:
临床产品直接影响患者健康和生命安全。因此,对安全性和有效性进行严格的监管至关重要。生物3D打印技术尽管科研广泛,但临床应用仍很少。一方面,临床转化研究还处于起步阶段;另一方面,政府部门也需要建立系统全面的监管和评估体系。3D打印产品在临床治疗应用中大致可分为两类:医疗器械与药品。医疗器械主要通过物理手段或辅助功能实现治疗目的,其作用机制不依赖于药理学、免疫学或代谢作用,而药品则旨在调节人体的生理功能。目前,市场上大多数的3D打印产品均属于医疗器械范畴,其临床应用需获得医疗器械注册证书。若3D打印产品中包含药物成分,如药物输送系统,则可能被视为药物或药械组合产品,并需要取得药品注册证书。相较于医疗器械,药品的研究、开发和生产过程更为复杂,对技术和设备的要求也更为严苛。特别是当3D打印产品涉及生物制剂(例如细胞、抗体、疫苗等)时,其管理需基于生物制剂的特定性质(如生物活性、免疫原性等)进行,因此,相关的临床试验过程可能会更加复杂和严格。
在中国,当前批准用于医疗3D打印的材料主要局限于钛、钽等无机不可降解材料。这类材料惰性强,监管审批相对简易。然而,这类材料主要通过机械嵌合的方式与组织结合,但并不牢固,且容易引发炎症、过敏等不良反应。 因此,未来的发展趋势将倾向于探索和开发面向组织再生的可降解材料。 尽管研究者们期望放宽监管政策以加速研究进程,但从监管角度而言,必须全面评估可降解人工植入物在体内的降解过程、代谢产物以及与宿主组织的相互作用,才能确保全生命周期行为的安全性。因此对于从研究到临床应用的转化过程,采取多阶段、渐进式的开发策略可能更为实用。例如,在3D打印医疗产品的生产中,可以优先考虑那些已经广泛应用于临床或仅需简单修改即可使用的材料。然而,从长远的角度来看,可降解材料、载药材料以及载生物制剂材料将成为未来研究的重点领域,对于推动医疗3D打印技术的发展具有重要意义。
图3 3D打印医疗器械监管中的全过程质量控制和全生命周期风险管理
中国智慧:中国在该领域的研究布局和创新成果
中国研究团队在3D生物打印技术方面取得了显著进展。在 打印材料 方面,推进了光固化墨水的标准化,开发了用于3D打印的可降解骨材料,多功能甘油水凝胶以及热固性弹性体等新型打印材料,为生物医学工程领域提供了更安全、更高效的材料解决方案。在 打印工艺 方面,研究工作主要聚焦在两条核心技术路径上:光固化打印和挤出式打印。光固化打印在高精度和多材料生物打印方面取得了显著进展,为复杂生物结构的精确构建开辟了新途径。同时,挤出式打印在优化打印窗口和实现高细胞密度打印方面也取得了重大进展,进一步增强了生物打印的功能性。在 打印方法 的探索中,研究团队对体积打印、微纳打印、嵌入式打印、梯度打印、压电材料打印和太空打印等一系列关键技术进行了深入研究。不仅扩大了3D生物打印的应用范围,还为未来的生物医学研究和临床应用提供了更多的可能性。此外,中国的研究团队也致力于开发器官芯片和类器官技术,旨在通过高度仿生的生理环境模拟来加速疾病建模、药物筛选和再生医学研究。
图4 生物3D打印技术进展
在组织再生策略的探索中,中国团队的研究内容涵盖了人体多个主要生理系统。其中, 骨骼肌肉系统 最受关注,包括生物陶瓷支架、多细胞支架、组织工程化骨骼、骨-软骨再生以及骨骼肌重建等方面。其次是 循环系统 ,主要研究重点包括人工血管、多级血管构建、功能化血管结构以及干细胞打印等。接下来是 神经系统 ,研究内容包括神经再生和脊髓损伤修复。 呼吸系统 研究主要集中在生物工程气管方面,而 生殖系统 则涉及海绵体组织修复。尽管 免疫系统 和消化系统方面的研究也存在,但相对不那么广泛,尚未触及核心功能,仅分别包括皮肤修复和血管化肝脏组织构建。 值得注意的是,泌尿系统和内分泌系统仍未得到探索,相关领域的研究潜力巨大,有望成为未来科研探索的“蓝海”区域。
本综述总结了近30个中国研究团队的研究进展,全方位地展示了3D打印在再生医学领域的前沿动态,鉴于篇幅所限,这里仅节选三项工作进行介绍。欢迎阅读本综述的英文全文版,了解更全面的研究进展。
图5 组织修复策略进展
工作1. 西安交通大学贺健康教授团队:生物可降解植入物的临床应用
生物降解植入物在组织工程中至关重要,作为组织再生的临时支撑,有望成为下一代临床医疗植入物。贺建康教授团队在增材制造个性化支架方面取得显著进展,尤其在软组织工程领域。他们优化了制造技术,制造出具有精确控制结构的生物降解支架,植入后能很好适应缺损区域,促进细胞增殖和分化。团队还解决了支架机械性能模仿天然组织的难题,并在乳房组织重建和气管修复中显示良好效果。与空军军医大学西京医院合作,开展了 全球首个定制化柔性生物降解乳房植入物的临床试验 ,31例病例显示植入物能有效与宿主组织整合并支持组织生长。还与唐都医院合作,提出了生物降解气道夹板的气管悬吊术, 已完成22例临床应用 ,均表现良好。这些临床试验获得显著认可,凸显了增材制造生物降解植入物在临床应用中的广阔潜力。
图6 可降解植入物的临床应用
工作2. 上交九院郝永强主任团队:骨/软骨修复的临床应用
骨/软骨缺损修复是骨科亟待解决的问题。相比传统植入材料,生物3D打印的个性化活性骨/软骨具有生物活性、骨/软骨诱导性及个性化设计等优势,临床应用前景广阔。郝永强主任团队致力于探索生物3D打印在此领域的应用,旨在实现有效且安全的治疗,并推动该技术从实验室走向临床实践。团队研发了多层生长因子复合支架,具有高精度和优异性能。他们还开发了负载骨髓间充质干细胞的复合支架,并设计制造了模仿天然骨和软骨组织的三层支架,实现了软骨和软骨下骨的同步再生。利用计算机辅助设计和制造技术,构建了类山羊股骨头的双相支架,实现了软骨和骨的整合结构。此外,团队还探索了利用工程化外泌体进行软骨修复和骨关节炎治疗的可行性。针对生物打印在骨缺损修复中的挑战,团队创建了具有快速内部血管化能力和持续骨诱导生物活性的分级多孔海绵状支架。他们还将富血小板血浆纳入系统,创建了活性骨修复支架,显著促进了血管长入和骨再生。团队首次在临床上应用了基于患者富血小板血浆的生物墨水与复合支架,用于修复和重建患者骨缺损,这是 全球首个相关临床应用案例 ,对未来骨科再生医学的发展具有重要指导意义。
图7 骨/软骨修复的临床应用
工作3. 浙江大学贺永教授团队:可移植气管制造
浙江大学贺永教授团队长期致力于大尺寸活性结构的体外制造研究。针对打印的大尺寸组织血供困难,细胞难以长期存活的难题,团队提出同轴生物3D打印方法,实现含多级血管网络结缔组织的高效构建。针对打印组织的强度低,难以满足临床需求的难题,团队提出生物混凝土设计方案,能够快速有效提升打印组织强度。同时,为提高打印精度和稳定性,团队建立了光固化生物墨水成形理论体系和评价指标,致力于推动生物墨水标准化,并研发了高精度、多材料打印装备。与上海市肺科医院陈昶教授团队合作,实现了长段活性气管的整体制造,证明了工程化制造的器官能够移植并长期存活。
图8 可移植气管制造
展望
突破时空的束缚,一直是人类追求的伟大梦想。在空间维度上,我们渴望深入探索宇宙的奥秘,实现星际迁徙的宏伟目标;而在时间维度上,我们则期盼能够延长生命的旅程,替换衰老的器官。事实上,在生物3D打印发展的早期阶段,人们曾畅想利用这一技术来制造可移植器官。然而,随着研究的深入,科学家们逐渐意识到,创造可移植器官的任务异常艰巨,故而“Organ Printing”的话题自2010年后就逐渐淡出了公众的视野。但近年来,随着3D打印技术的快速发展,我们认为: 是时候重新审视可移植器官制造这一话题了 。尽管道路仍然漫长且充满挑战,但这一目标已经不再是纯粹的科幻场景。
图9 器官工程:从形似到神似
为迈向这一目标,我们首先要关注的是: 如何实现更仿生的设计、更精确的打印以及更活性的墨水 。鉴于当前制造能力的局限性,仿生设计需要与工程实施能力相匹配;同时,对更高层次仿生学的追求也将不断推动制造技术的进步,实现更精准的打印效果。此外,作为整个技术体系的基石,生物墨水的性能亦需持续优化,未来研究应聚焦于如何结合人工智能手段,加速生物墨水的迭代,从而设计出匹配不同组织器官发育过程的智能响应型生物墨水。
在器官再造的基础研究中,神经化及血管化的成功构建是一个关键节点 ,它对于保障大尺寸工程组织的活性至关重要,也是生物组织功能化的基本前提。然而,自然组织内部的毛细血管网络以及神经末梢通常为微米尺度,而器官的整体尺寸要达到分米及以上尺度,这一由微观至宏观的跨尺度精确构造过程,对制造技术提出了极高的要求。
在3D打印的产业应用路径上,服务于细胞治疗将成为未来的聚焦重点 。当前,干细胞治疗主要通过直接注射细胞或细胞微球,但这种方式所呈现的细胞状态与生物体内的真实环境存在较大差异。相比之下,利用生物支架作为载体进行干细胞精准递送,并通过结构设计引导并调控细胞行为,能够促使细胞形成更接近真实状态的“迷你组织”。这一策略有望实现从细胞治疗向“迷你组织”治疗的范式转变,为临床治疗提供新的视角与路径。
撰写团队 :西安交通大学贺健康教授;中国科学院吴成铁研究员、阮长顺研究员、顾奇研究员、白硕研究员;上交九院郝永强主任;哈尔滨工业大学吴洋教授;湖南大学韩晓筱教授;清华大学欧阳礼亮教授、熊卓教授、温鹏教授、庞媛研究员;广州医科大学谢茂彬教授;宁波大学邵磊研究员;太原理工大学聂晶教授;中南大学帅词俊教授;四川大学周长春研究员;香港理工大学赵昕教授;华南理工大学施雪涛教授;东华大学游正伟教授;西北工业大学汪焰恩教授。浙江大学尹俊研究员、周竑钊研究员、马梁教授、俞梦飞研究员、傅佳寅研究员、贺永教授、杨华勇院士。
阅读原文:https://doi.org/10.1631/bdm.2400309,与中国顶尖实验室同步前沿动态。
「BDM学科地理前沿」 栏目往期推送
1. 日本: 【封面文章】浙大机械韩冬等 | 日本生物制造前沿研究-2018-2023
Cao Q, Zhang Y, Deng R, et al., 2023 . Biomanufacturing in Japan: frontier research from 2018 to 2023. Bio-des Manuf 6(6):617–645. https://doi.org/10.1007/s42242-023-00261-3
2. 以色列: 浙大机械陶凯等 | 创新引领发展:以色列生物3D打印一瞥
Cao Q, Zhang Y, Deng R, et al., 2023 . Biomanufacturing in Japan: frontier research from 2018 to 2023. Bio-des Manuf 6(6):617–645. https://doi.org/10.1007/s42242-023-00261-3
3. 英国&爱尔兰: 【封面文章】剑桥Shery Huang和布里斯托James Armstrong等 | 生物制造领域学科前沿——爱尔兰和英国篇
Murphy JF, Lavelle M, Asciak L, et al., 2024. Biofabrication and biomanufacturing in Ireland and the UK. Bio-des Manuf 7(6):825-856. https://doi.org/10.1007/ s42242-024-00316-z
参考文献
上下滑动以阅览
1. Drucker CB (2008) Ambroise Paré and the birth of the gentle art of surgery. Yale J Biol Med 81(4):199–202
2. Keeling C, Davies S, Goddard J et al (2024) The clinical significance of sub-total surgical resection in childhood medulloblastoma: a multi-cohort analysis of 1100 patients. eClinicalMedicine 69: 102469. https://doi.org/10.1016/j.eclinm.2024.102469
3. Jo SH, Kang SH, Seo WS et al (2021) Psychiatric understanding and treatment of patients with amputations. Yeungnam Univ J Med 38(3):194–201. https://doi.org/10.12701/yujm.2021.00990
4. Gurrado A, Faillace G, Bottero L et al (2009) Laparoscopic appendectomies: experience of a surgical unit. Minim Invasiv Ther Allied Technol 18(4):242–247. https://doi.org/10.1080/13645700903053840
5. Lin ZY, Zhang XL, Chen YJ et al (2023) Negative pressure wound therapy for flap closed-incisions after 3D-printed prosthesis implantation in patients with chronic osteomyelitis with soft tissue defects. BMC Musculoskelet Disord 24(1):827. https://doi.org/10.1186/s12891-023-06970-1
6. The Lancet Editors (2018) Retraction-Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet 392(10141):11. https://doi.org/10.1016/S0140-6736(18)31558-7
7. Mazzoni E, Iaquinta MR, Lanzillotti C et al (2021) Bioactive materials for soft tissue repair. Front Bioeng Biotechnol 9:613787. https://doi.org/10.3389/fbioe.2021.613787
8. Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(Suppl 4):467–479. https://doi.org/10.1007/s00586-008-0745-3
9. Song L, Xu B, Chen YD et al (2021) Thinner strut sirolimuseluting BRS versus EES in patients with coronary artery disease. JACC Cardiovasc Interve 14(13):1450–1462. https://doi.org/10.1016/j.jcin.2021.04.048
10. Webber MJ, Khan OF, Sydlik SA et al (2015) A perspective on the clinical translation of scaffolds for tissue engineering. Ann Biomed Eng 43(3):641–656. https://doi.org/10.1007/s10439-014-1104-7
11. Bajaj P, Schweller RM, Khademhosseini A et al (2014) 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng 16(1):247–276. https://doi.org/10.1146/annurev-bioeng-071813-105155
12. Daly AC, Prendergast ME, Hughes AJ et al (2021) Bioprinting for the biologist. Cell 184(1):18–32. https://doi.org/10.1016/j.cell.2020.12.002
13. Richards DJ, Tan Y, Jia J et al (2013) 3D printing for tissue engineering. Isr J Chem 53(9–10):805–814. https://doi.org/10.1002/ijch.201300086
14. Moroni L, Boland T, Burdick JA et al (2018) Biofabrication: a guide to technology and terminology. Trends Biotechnol 36(4): 384–402. https://doi.org/10.1016/j.tibtech.2017.10.015
15. He CF, Qiao TH, Wang GH et al (2025) High-resolution projection-based 3D bioprinting. Nat Rev Bioeng 3:143–158. https://doi.org/10.1038/s44222-024-00218-w
16. Wang PJ, Sun YZ, Shi XQ et al (2021) 3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Bio-Des Manuf 4(2):344–378. https://doi.org/10.1007/s42242-020-00109-0
17. Gao G, Ahn M, Cho WW et al (2021) 3D printing of pharmaceutical application: drug screening and drug delivery. Pharmaceutics 13(9):1373. https://doi.org/10.3390/pharmaceutics13091373
18. Sun W, Starly B, Daly AC et al (2020) The bioprinting roadmap. Biofabrication 12(2):022002. https://doi.org/10.1088/1758-5090/ab5158
19. Fang YC, Wang CJ, Liu ZB et al (2023) 3D printed conductive multiscale nerve guidance conduit with hierarchical fibers for peripheral nerve regeneration. Adv Sci 10(12):e2205744. https://doi.org/10.1002/advs.202205744
20. Sun Y, Yu K, Gao Q et al (2022) Projection-based 3D bioprinting for hydrogel scaffold manufacturing. Bio-Des Manuf 5(3): 633–639. https://doi.org/10.1007/s42242-022-00189-0
21. He CF, Chen XC, Sun Y et al (2022) Rapid and mass manufacturing of soft hydrogel microstructures for cell patterns assisted by 3D printing. Bio-Des Manuf 5(4):641–659. https://doi.org/10.1007/s42242-022-00207-1
22. Yuan XM, Zhu Z, Xia PC et al (2023) Tough gelatin hydrogel for tissue engineering. Adv Sci 10(24):2301665. https://doi.org/10.1002/advs.202301665
23. Wang ZL, Zheng Y, Qiao L et al (2024) 4D-printed MXene-based artificial nerve guidance conduit for enhanced regeneration of peripheral nerve injuries. Adv Healthc Mater 13(23):e2401093. https://doi.org/10.1002/adhm.202401093
24. Chen YW, Zou ZF, Fu T et al (2024) 3D printed grafts with gradient structures for organized vascular regeneration. Int J Extrem Manuf 6(3):035503. https://doi.org/10.1088/2631-7990/ad2f50
25. Shi Y, Shi J, Sun Y et al (2023) A hierarchical 3D graft printed with nanoink for functional craniofacial bone restoration. Adv Funct Mater 33(40):2301099. https://doi.org/10.1002/adfm.202301099
26. Xie MJ, Sun Y, Wang J et al (2022) Thermo-sensitive sacrificial microsphere-based bioink for centimeter-scale tissue with angiogenesis. Int J Bioprint 8(4):599. https://doi.org/10.18063/ijb.v8i4.599
27. Tang H, Sun WY, Liu XC et al (2023) A bioengineered trachealike structure improves survival in a rabbit tracheal defect model. Sci Transl Med 15(714):eabo4272. https://doi.org/10.1126/scitranslmed.abo4272
28. He J, Sun Y, Gao Q et al (2023) Gelatin methacryloyl hydrogel, from standardization, performance, to biomedical application. Adv Healthc Mater 12(23):e2300395. https://doi.org/10.1002/adhm.202300395
29. Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(1):4. https://doi.org/10.1186/s13036-015-0001-4
30. Murphy CA, Lim KS, Woodfield TBF (2022) Next evolution in organ-scale biofabrication: bioresin design for rapid high-resolution vat polymerization. Adv Mater 34(20):e2107759. https://doi.org/10.1002/adma.202107759
31. Gao Q, Xie CQ, Wang P et al (2020) 3D printed multi-scale scaffolds with ultrafine fibers for providing excellent biocompatibility. Mater Sci Eng C Mater Biol Appl 107:110269. https://doi.org/10.1016/j.msec.2019.110269
32. Yu K, Zhang XJ, Sun Y et al (2022) Printability during projection-based 3D bioprinting. Bioact Mater 11:254–267. https://doi.org/10.1016/j.bioactmat.2021.09.021
33. Sun Y, Yu K, Nie J et al (2021) Modeling the printability of photocuring and strength adjustable hydrogel bioink during projection based 3D bioprinting. Biofabrication 13(3):035032. https://doi.org/10.1088/1758-5090/aba413
34. Yao K, Hong GY, Yuan XM et al (2024) 3D printing of tough hydrogel scaffolds with functional surface structures for tissue regeneration. Nano-Micro Lett 17(1):27. https://doi.org/10.1007/s40820-024-01524-z
35. Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5(1): 32–45. https://doi.org/10.1186/ar614
36. Landers R, Hübner U, Schmelzeisen R et al (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23(23): 4437–4447. https://doi.org/10.1016/s0142-9612(02)00139-4
37. Dhariwala B, Hunt E, Boland T (2004) Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng 10(9–10):1316–1322. https://doi.org/10.1089/ten.2004.10.1316
38. Groll J, Burdick JA, Cho DW et al (2018) A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11(1):013001. https://doi.org/10.1088/1758-5090/aaec52
39. Shao L, Gao Q, Xie CQ et al (2020) Directly coaxial 3D bioprinting of large-scale vascularized tissue constructs. Biofabrication 12(3):035014. https://doi.org/10.1088/1758-5090/ab7e76
40. Zhou LY, Fu JZ, He Y (2020) A review of 3D printing technologies for soft polymer materials. Adv Funct Mater 30(28):2000187. https://doi.org/10.1002/adfm.202000187
41. Zheng K, Chai MY, Luo BP et al (2024) Recent progress of 3D printed vascularized tissues and organs. Smart Mater Med 5(2): 183–195. https://doi.org/10.1016/j.smaim.2024.01.001
42. He CF, Sun Y, Liu NA et al (2023) Formation theory and printability of photocurable hydrogel for 3D bioprinting. Adv Funct Mater 33(29):2301209. https://doi.org/10.1002/adfm.202301209
43. Jin ZBY, He CF, Fu JZ et al (2022) Balancing the customization and standardization: exploration and layout surrounding the regulation of the growing field of 3D-printed medical devices in China. Bio-Des Manuf 5(3):580–606. https://doi.org/10.1007/s42242-022-00187-2
44. Xia MY, Wu MX, Li YR et al (2023) Varying mechanical forces drive sensory epithelium formation. Sci Adv 9(44):eadf2664. https://doi.org/10.1126/sciadv.adf2664
45. He CF, Sun Y, Liu NA et al (2023) Formation theory and printability of photocurable hydrogel for 3D bioprinting. Adv Funct Mater 33(29):2301209. https://doi.org/10.1002/adfm.202301209
46. Jakus AE, Rutz AL, Jordan SW et al (2016) Hyperelastic “bone”: a highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial. Sci Transl Med 8(358): 358ra127. https://doi.org/10.1126/scitranslmed.aaf7704
47. Trombetta R, Inzana JA, Schwarz EM et al (2017) 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng 45(1):23–44. https://doi.org/10.1007/s10439-016-1678-3
48. Yang YH, Xu TP, Bei HP et al (2022) Gaussian curvature-driven direction of cell fate toward osteogenesis with triply periodic minimal surface scaffolds. Proc Natl Acad Sci USA 119(41): e2206684119. https://doi.org/10.1073/pnas.2206684119
49. Yang YH, Zhang Q, Xu TP et al (2020) Photocrosslinkable nanocomposite ink for printing strong, biodegradable and bioactive bone graft. Biomaterials 263:120378. https://doi.org/10.1016/j.biomaterials.2020.120378
50. Yang YH, Xu TP, Bei HP et al (2021) Sculpting bio-inspired surface textures: an adhesive Janus periosteum. Adv Funct Mater 31(37):2104636. https://doi.org/10.1002/adfm.202104636
51. Fang JH, Liu HQ, Qiao W et al (2023) Biomimicking leaf-vein engraved soft and elastic membrane promotes vascular reconstruction. Adv Healthc Mater 12(2):2201220. https://doi.org/10.1002/adhm.202201220
52. Xu TP, Yang YH, Yeung EHL et al (2023) Injectable, self-contained, subaqueously cross-linking laminous adhesives for biophysical-chemical modulation of osteochondral microenvironment. Adv Funct Mater 33(23):2213428. https://doi.org/10.1002/adfm.202213428
53. Lyu S, Liu Q, Yuen HY et al (2024) A differential-targeting core-shell microneedle patch with coordinated and prolonged release of mangiferin and MSC-derived exosomes for scarless skin regeneration. Mater Horiz 11:2667–2684. https://doi.org/10.1039/d3mh01910a
54. Ravanbakhsh H, Karamzadeh V, Bao G et al (2021) Emerging technologies in multi-material bioprinting. Adv Mater 33(49): e2104730. https://doi.org/10.1002/adma.202104730
55. Zhang YN, O’Mahony A, He Y et al (2024) Hydrodynamic shear stress’ impact on mammalian cell properties and its applications in 3D bioprinting. Biofabrication 16(2):22003. https://doi.org/10.1088/1758-5090/ad22ee
56. Song JC, Chen S, Sun LJ et al (2020) Mechanically and electronically robust transparent organohydrogel fibers. Adv Mater 32(8):1906994. https://doi.org/10.1002/adma.201906994
57. Jiang SH, Deng JJ, Jin YH et al (2023) Breathable, antifreezing, mechanically skin-like hydrogel textile wound dressings with dual antibacterial mechanisms. Bioact Mater 21:313–323. https://doi.org/10.1016/j.bioactmat.2022.08.014
58. Chen S, Jiang SH, Qiao D et al (2023) Chinese tofu-inspired biomimetic conductive and transparent fibers for biomedical applications. Small Methods 7(4):e2201604. https://doi.org/10.1002/smtd.202201604
59. Liu ML, Jiang SH, Witman N et al (2023) Intrinsically cryopreservable, bacteriostatic, durable glycerohydrogel inks for 3D bioprinting. Matter 6(3):983–999. https://doi.org/10.1016/j.matt.2022.12.013
60. Chen S, Wang YH, Yang L et al (2023) Biodegradable elastomers for biomedical applications. Prog Polym Sci 147:101763. https://doi.org/10.1016/j.progpolymsci.2023.101763
61. Chen S, Wu ZK, Chu CZ et al (2022) Biodegradable elastomers and gels for elastic electronics. Adv Sci 9(13):e2105146. https://doi.org/10.1002/advs.202105146
62. Zhang LZ, Chen S, You ZW (2023) Hybrid cross-linking to construct functional elastomers. Acc Chem Res 56(21):2907–2920. https://doi.org/10.1021/acs.accounts.3c00391
63. Lei D, Yang Y, Liu ZH et al (2019) A general strategy of 3D printing thermosets for diverse applications. Mater Horiz 6(2): 394–404. https://doi.org/10.1039/c8mh00937f
64. Chen S, Sun LJ, Zhou XJ et al (2020) Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nat Commun 11(1):1107. https://doi.org/10.1038/s41467-020-14446-2
65. Gong Z, Lei D, Wang CG et al (2020) Bioactive elastic scaffolds loaded with neural stem cells promote rapid spinal cord regeneration. ACS Biomater Sci Eng 6(11):6331–6343. https://doi.org/10.1021/acsbiomaterials.0c01057
66. Xu Y, Guo YF, Li YQ et al (2020) Biomimetic trachea regeneration using a modular ring strategy based on poly(sebacoyl diglyceride)/ polycaprolactone for segmental trachea defect repair. Adv Funct Mater 30(42):2004276. https://doi.org/10.1002/adfm.202004276
67. Xuan HX, Hu HR, Geng CY et al (2020) Biofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cellfree cartilage regeneration. Acta Biomater 105:97–110. https://doi.org/10.1016/j.actbio.2020.01.015
68. Xiao B, Yang WJ, Lei D et al (2019) PGS scaffolds promote the in vivo survival and directional differentiation of bone marrow mesenchymal stem cells restoring the morphology and function of wounded rat uterus. Adv Healthc Mater 8(5):1801455. https://doi.org/10.1002/adhm.201801455
69. Wang SN, Luo B, Bai BS et al (2023) 3D printed chondrogenic functionalized PGS bioactive scaffold for cartilage regeneration. Adv Healthc Mater 12(27):e2301006. https://doi.org/10.1002/adhm.202301006
70. Yang Y, Lei D, Huang SX et al (2019) Elastic 3D-printed hybrid polymeric scaffold improves cardiac remodeling after myocardial infarction. Adv Healthc Mater 8(10):e1900065. https://doi.org/10.1002/adhm.201900065
71. Chen S, Huang T, Zuo H et al (2018) A single integrated 3D-printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics. Adv Funct Mater 28(46):1805108. https://doi.org/10.1002/adfm.201805108
72. Luo B, Wang SN, Song XQ et al (2024) An encapsulation-free and hierarchical porous triboelectric scaffold with dynamic hydrophilicity for efficient cartilage regeneration. Adv Mater 36(27): e2401009. https://doi.org/10.1002/adma.202401009
73. Luo B, Zhou QQ, Chen WY et al (2023) Nonadjacent wireless electrotherapy for tissue repair by a 3D-printed bioresorbable fully soft triboelectric nanogenerator. Nano Lett 23(7):2927–2937. https://doi.org/10.1021/acs.nanolett.3c00300
74. Qian B, Shen A, Huang SX et al (2023) An intrinsically magnetic epicardial patch for rapid vascular reconstruction and drug delivery. Adv Sci 10(36):e2303033. https://doi.org/10.1002/advs.202303033
75. Lei D, Luo B, Guo YF et al (2019) 4-Axis printing microfibrous tubular scaffold and tracheal cartilage application. Sci China Mater 62(12):1910–1920. https://doi.org/10.1007/s40843-019-9498-5
76. Yang Q, Lei D, Huang SX et al (2020) A novel biodegradable external stent regulates vein graft remodeling via the Hippo-YAP and mTOR signaling pathways. Biomaterials 258:120254. https://doi.org/10.1016/j.biomaterials.2020.120254
77. Xiao WW, Chen WL, Wang YG et al (2022) Recombinant DTβ4-inspired porous 3D vascular graft enhanced antithrombogenicity and recruited circulating CD93+/CD34+ cells for endothelialization. Sci Adv 8(28):eabn1958. https://doi.org/10.1126/sciadv.abn1958
78. Wang Y, Pan JZ, Han XX et al (2008) A phenomenological model for the degradation of biodegradable polymers. Biomaterials 29(23):3393–3401. https://doi.org/10.1016/j.biomaterials.2008.04.042
79. Han XX, Pan JZ (2011) Polymer chain scission, oligomer production and diffusion: a two-scale model for degradation of bioresorbable polyesters. Acta Biomater 7(2):538–547. https://doi.org/10.1016/j.actbio.2010.09.005
80. Han XX, Pan JZ (2009) A model for simultaneous crystallisation and biodegradation of biodegradable polymers. Biomaterials 30(3): 423–430. https://doi.org/10.1016/j.biomaterials.2008.10.001
81. Chen F, Ekinci A, Li L et al (2021) How do the printing parameters of fused filament fabrication and structural voids influence the degradation of biodegradable devices? Acta Biomater 136:254–265. https://doi.org/10.1016/j.actbio.2021.09.020
82. Zhu XL, Chen F, Cao H et al (2023) Design and fused deposition modeling of triply periodic minimal surface scaffolds with channels and hydrogel for breast reconstruction. Int J Bioprint 9(2): 407–421. https://doi.org/10.18063/ijb.685
83. Li J, Chen F, Wang MX et al (2024) Design and optimization of 3D-bioprinted cell-laden scaffolds in dynamic culture. Int J Bioprint 10(3):1838. https://doi.org/10.36922/ijb.1838
84. He N, Wang XN, Shi LY et al (2023) Photoinhibiting via simultaneous photoabsorption and free-radical reaction for high-fidelity light-based bioprinting. Nat Commun 14(1):3063. https://doi.org/10.1038/s41467-023-38838-2
85. He N, Wang XN, Shi LY et al (2023) Photoinhibiting via simultaneous photoabsorption and free-radical reaction for high-fidelity light-based bioprinting. Nat Commun 14(1):3063. https://doi.org/10.1038/s41467-023-38838-2
86. Li Y, Mao QJ, Yin J et al (2021) Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials. Addit Manuf 37:101716. https://doi.org/10.1016/j.addma.2020.101716
87. Li Y, Mao QJ, Li XK et al (2019) High-fidelity and high-efficiency additive manufacturing using tunable pre-curing digital light processing. Addit Manuf 30:100889. https://doi.org/10.1016/j.addma.2019.100889
88. Wu Y, Su H, Li M et al (2023) Digital light processing-based multi-material bioprinting: processes, applications, and perspectives. J Biomed Mater Res Part A 111(4):527–542. https://doi.org/10.1002/jbm.a.37473
89. Ma XY, Qu X, Zhu W et al (2016) Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci USA 113(8):2206–2211. https://doi.org/10.1073/pnas.1524510113
90. Wang M, Li WL, Mille LS et al (2022) Digital light processing based bioprinting with composable gradients. Adv Mater 34(1): e2107038. https://doi.org/10.1002/adma.202107038
91. Su H, Lu BX, Li M et al (2023) Development of digital light processing-based multi-material bioprinting for fabrication of heterogeneous tissue constructs. Biomater Sci 11(19):6663–6673. https://doi.org/10.1039/d3bm01054f
92. Yang M, Chu L, Zhuang YF et al (2024) Multi-material digital light processing (DLP) bioprinting of heterogeneous hydrogel constructs with perfusable networks. Adv Funct Mater 34(32): 2316456. https://doi.org/10.1002/adfm.202316456
93. Shi HM, Li Y, Xu KL et al (2023) Advantages of photo-curable collagen-based cell-laden bioinks compared to methacrylated gelatin (GelMA) in digital light processing (DLP) and extrusion bioprinting. Mater Today Bio 23:100799. https://doi.org/10.1016/j.mtbio.2023.100799
94. Fang HM, Ju JY, Chen LF et al (2024) Clay sculpture-inspired 3D printed microcage module using bioadhesion assembly for specific-shaped tissue vascularization and regeneration. Adv Sci 11(21):e2308381. https://doi.org/10.1002/advs.202308381
95. Ouyang LL (2022) Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting. Trends Biotechnol 40(7): 891–902. https://doi.org/10.1016/j.tibtech.2022.01.001
96. Ouyang LL, Armstrong JPK, Lin YY et al (2020) Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Sci Adv 6(38):eabc5529. https://doi.org/10.1126/sciadv.abc5529
97. Wang M, Li WL, Hao J et al (2022) Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues. Nat Commun 13(1): 3317. https://doi.org/10.1038/s41467-022-31002-2
98. Ouyang L, Highley CB, Sun W et al (2017) A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Adv Mater 29(8):1604983. https://doi.org/10.1002/adma.201604983
99. McCormack A, Highley CB, Leslie NR et al (2020) 3D printing in suspension baths: keeping the promises of bioprinting afloat. Trends Biotechnol 38(6):584–593. https://doi.org/10.1016/j.tibtech.2019.12.020
100. Xin SJ, Deo KA, Dai J et al (2021) Generalizing hydrogel microparticles into a new class of bioinks for extrusion bioprinting. Sci Adv 7(42):eabk3087. https://doi.org/10.1126/sciadv.abk3087
101. Zhou DZ, Dou BH, Kroh F et al (2023) Biofabrication strategies with single-cell resolution: a review. Int J Extrem Maunf 5(4): 42005. https://doi.org/10.1088/2631-7990/ace863
102. You ST, Xiang Y, Hwang HH et al (2023) High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci Adv 9(8):eade7923. https://doi.org/10.1126/sciadv.ade7923
103. Almeida-Pinto J, Moura BS, Gaspar VM et al (2024) Advances in cell-rich inks for biofabricating living architectures. Adv Mater 36(27):e2313776. https://doi.org/10.1002/adma.202313776
104. Norotte C, Marga FS, Niklason LE et al (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30): 5910–5917. https://doi.org/10.1016/j.biomaterials.2009.06.034
105. Grogan SP, Dorthé EW, Glembotski NE et al (2020) Cartilage tissue engineering combining microspheroid building blocks and microneedle arrays. Connect Tissue Res 61(2):229–243. https://doi.org/10.1080/03008207.2019.1617280
106. Skylar-Scott MA, Uzel SGM, Nam LL et al (2019) Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci Adv 5(9):eaaw2459. https://doi.org/10.1126/sciadv.aaw2459
107. Machino R, Matsumoto K, Taniguchi D et al (2019) Replacement of rat tracheas by layered, trachea-like, scaffold-free structures of human cells using a bio-3D printing system. Adv Healthc Mater 8(7):e1800983. https://doi.org/10.1002/adhm.201800983
108. Ayan B, Heo DN, Zhang ZF et al (2020) Aspiration-assisted bioprinting for precise positioning of biologics. Sci Adv 6(10): eaaw5111. https://doi.org/10.1126/sciadv.aaw5111
109. Zhang JH, Xin W, Qin YC et al (2022) “All-in-one” zwitterionic granular hydrogel bioink for stem cell spheroids production and 3D bioprinting. Chem Eng J 430:132713. https://doi.org/10.1016/j.cej.2021.132713
110. Wu Y, Ayan B, Moncal KK et al (2020) Hybrid bioprinting of zonally stratified human articular cartilage using scaffold-free tissue strands as building blocks. Adv Healthc Mater 9(22):e2001657. https://doi.org/10.1002/adhm.202001657
111. Ayan B, Wu Y, Karuppagounder V et al (2020) Aspirationassisted bioprinting of the osteochondral interface. Sci Rep 10(1): 13148. https://doi.org/10.1038/s41598-020-69960-6
112. Li M, Wu Y, Yuan T et al (2023) Biofabrication of composite tendon constructs with the fibrous arrangement, high cell density, and enhanced cell alignment. ACS Appl Mater Interfaces 15(41): 47989–48000. https://doi.org/10.1021/acsami.3c10697
113. Wu Y, Hospodiuk M, Peng WJ et al (2018) Porous tissue strands: avascular building blocks for scalable tissue fabrication. Biofabrication 11(1):015009. https://doi.org/10.1088/1758-5090/aaec22
114. Jing SB, Lian LM, Hou YY et al (2024) Advances in volumetric bioprinting. Biofabrication 16(1):12004. https://doi.org/10.1088/1758-5090/ad0978
115. Xie MB, Lian LM, Mu X et al (2023) Volumetric additive manufacturing of pristine silk-based (bio)inks. Nat Commun 14(1):210. https://doi.org/10.1038/s41467-023-35807-7
116. Kelly BE, Bhattacharya I, Heidari H et al (2019) Volumetric additive manufacturing via tomographic reconstruction. Science 363(6431):1075–1079. https://doi.org/10.1126/science.aau7114
117. Zheng ZH, Lian LM, Xie MB (2024) Ultrasound volumetric bioprinting: opportunities and challenges. Innov Life 2(1):100053. https://doi.org/10.59717/j.xinn-life.2024.100053
118. Lian LM, Xie MB, Luo ZY et al (2024) Rapid volumetric bioprinting of decellularized extracellular matrix bioinks. Adv Mater 36(34):e2304846. https://doi.org/10.1002/adma.202304846
119. Zhang B, He JK, Lei Q et al (2020) Electrohydrodynamic printing of sub-microscale fibrous architectures with improved cell adhesion capacity. Virt Phys Prototy 15(1):62–74. https://doi.org/10.1080/17452759.2019.1662991
120. He JK, Hao GZ, Meng ZJ et al (2022) Expanding melt-based electrohydrodynamic printing of highly-ordered microfibrous architectures to cm-height via in situ charge neutralization. Adv Mater Technol 7(7):2101197. https://doi.org/10.1002/admt.202101197
121. Mao M, He JK, Li Z et al (2020) Multi-directional cellular alignment in 3D guided by electrohydrodynamically-printed microlattices. Acta Biomater 101:141–151. https://doi.org/10.1016/j.actbio.2019.10.028
122. Han K, He JK, Fu LY et al (2023) Engineering highly-aligned three-dimensional (3D) cardiac constructs for enhanced myocardial infarction repair. Biofabrication 15(1):15003. https://doi.org/10.1088/1758-5090/ac94f9
123. Yao C, Qiu ZN, Li X et al (2023) Electrohydrodynamic printing of microfibrous architectures with cell-scale spacing for improved cellular migration and neurite outgrowth. Small 19(19):e2207331. https://doi.org/10.1002/smll.202207331
124. Qiu ZN, Zhu H, Wang YT et al (2023) Functionalized alginate-based bioinks for microscale electrohydrodynamic bioprinting of living tissue constructs with improved cellular spreading and alignment. Bio-Des Manuf 6(2):136–149. https://doi.org/10.1007/s42242-022-00225-z
125. Li Q, Ma L, Gao ZQ et al (2022) Regulable supporting baths for embedded printing of soft biomaterials with variable stiffness. ACS Appl Mater Interfaces 14(37):41695–41711. https://doi.org/10.1021/acsami.2c09221
126. Li Q, Jiang ZR, Ma L et al (2022) A versatile embedding medium for freeform bioprinting with multi-crosslinking methods. Biofabrication 14(3):35022. https://doi.org/10.1088/1758-5090/ac7909
127. Gao ZQ, Yin J, Liu P et al (2023) Simultaneous multi-material embedded printing for 3D heterogeneous structures. Int J Extrem Manuf 5(3):35001. https://doi.org/10.1088/2631-7990/acd285
128. Wu Y, Yang X, Gupta D et al (2024) Dissecting the interplay mechanism among process parameters toward the biofabrication of high-quality shapes in embedded bioprinting. Adv Funct Mater 34(21):2313088. https://doi.org/10.1002/adfm.202313088
129. Wu Y, Yang X, Yuan TY et al (2024) Development of embedded bioprinting for fabricating zonally stratified articular cartilage. Int J Bioprinting 10(4):3520. https://doi.org/10.36922/ijb.3520
130. Fang YC, Ji MK, Wu BY et al (2023) Engineering highly vascularized bone tissues by 3D bioprinting of granular prevascularized spheroids. ACS Appl Mater Interfaces 15(37):43492–43502. https://doi.org/10.1021/acsami.3c08550
131. Fang YC, Guo YH, Wu BY et al (2023) Expanding embedded 3D bioprinting capability for engineering complex organs with freeform vascular networks. Adv Mater 35(22):e2205082. https://doi.org/10.1002/adma.202205082
132. Koons GL, Diba M, Mikos AG (2020) Materials design for bone-tissue engineering. Nat Rev Mater 5(8):584–603. https://doi.org/10.1038/s41578-020-0204-2
133. Liu YQ, He K, Chen G et al (2017) Nature-inspired structural materials for flexible electronic devices. Chem Rev 117(20): 12893–12941. https://doi.org/10.1021/acs.chemrev.7b00291
134. Kotikian A, McMahan C, Davidson EC et al (2019) Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci Robot 4(33):eaax7044. https://doi.org/10.1126/scirobotics.aax7044
135. Xing RZ, Yang JY, Zhang DG et al (2023) Metallic gels for conductive 3D and 4D printing. Matter 6(7):2248–2262. https://doi.org/10.1016/j.matt.2023.06.015
136. Qu HW, Fu HY, Han ZY et al (2019) Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv 9(45):26252–26262. https://doi.org/10.1039/C9RA05214C
137. Liu K, Hu N, Yu ZH et al (2023) 3D printing and bioprinting in urology. Int J Bioprinting 9(6):325–342. https://doi.org/10.36922/ijb.0969
138. Qu HW, Han ZY, Chen ZG et al (2021) Fractal design boosts extrusion-based 3D printing of bone-mimicking radial-gradient scaffolds. Research 2021:9892689. https://doi.org/10.34133/2021/9892689
139. Qu HW, Gao CJ, Liu KZ et al (2024) Gradient matters via filament diameter-adjustable 3D printing. Nat Commun 15(1):2930. https://doi.org/10.1038/s41467-024-47360-y
140. Liu WW, Li XK, Jiao YL et al (2020) Biological effects of a three-dimensionally printed Ti6Al4V scaffold coated with piezoelectric BaTiO3 nanoparticles on bone formation. ACS Appl Mater Interfaces 12(46):51885–51903. https://doi.org/10.1021/acsami.0c10957
141. Chen L, Yang JY, Cai ZW et al (2024) Electroactive biomaterials regulate the electrophysiological microenvironment to promote bone and cartilage tissue regeneration. Adv Funct Mater 34(23): 2314079. https://doi.org/10.1002/adfm.202314079
142. Shuai CJ, Liu GF, Yang YW et al (2020) A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold. Nano Energy 74:104825. https://doi.org/10.1016/j.nanoen.2020.104825
143. Shuai CJ, Cheng Y, Yang WJ et al (2020) Magnetically actuated bone scaffold: microstructure, cell response and osteogenesis. Compos Part B Eng 192:107986. https://doi.org/10.1016/j.compositesb.2020.107986
144. Shuai CJ, Chen X, He CX et al (2022) Construction of magnetic nanochains to achieve magnetic energy coupling in scaffold. Biomater Res 26(1):38. https://doi.org/10.1186/s40824-022-00278-2
145. Qi FW, Liao RB, Shuai Y et al (2022) A conductive network enhances nerve cell response. Addit Manuf 52:102694. https://doi.org/10.1016/j.addma.2022.102694
146. Qi FW, Liao RB, Wu P et al (2023) An electrical microenvironment constructed based on electromagnetic induction stimulates neural differentiation. Mater Chem Front 7(8):1671–1683. https://doi.org/10.1039/d2qm01193j
147. Silvani G, Basirun C, Wu HJ et al (2021) A 3D-bioprinted vascularized glioblastoma-on-a-chip for studying the impact of simulated microgravity as a novel pre-clinical approach in brain tumor therapy. Adv Ther 4(11):2100106. https://doi.org/10.1002/adtp.202100106
148. Melnik D, Krueger M, Schulz H et al (2021) The cellbox-2 mission to the international space station: thyroid cancer cells in space. Int J Mol Sci 22(16):8777. https://doi.org/10.3390/ijms22168777
149. Mao M, Meng ZJ, Huang XX et al (2024) 3D printing in space: from mechanical structures to living tissues. Int J Extrem Manuf 6(2):23001. https://doi.org/10.1088/2631-7990/ad23ef
150. Parfenov VA, Khesuani YD, Petrov SV et al (2020) Magnetic levitational bioassembly of 3D tissue construct in space. Sci Adv 6(29):eaba4174. https://doi.org/10.1126/sciadv.aba4174
151. Warth N, Berg M, Schumacher L et al (2024) Bioprint FirstAid: a handheld bioprinter for first aid utilization on space exploration missions. Acta Astronaut 215:194–204. https://doi.org/10.1016/j.actaastro.2023.11.033
152. Mo XW, Zhang YM, Wang ZX et al (2023) Satellite-based on-orbit printing of 3D tumor models. Adv Mater 36(34):e2309618. https://doi.org/10.1002/adma.202309618
153. Somasekhar L (2021) Bioink Optimization and Effects of Microgravity on 3D Bioprinted Cell Laden Constructs. PhD Thesis, Florida Institute of Technology, USA. https://repository.fit.edu/etd/588
154. Kishore MN, Qian D, Li W (2023) Multi-physics modeling of 3D bioprinting of polycaprolactone scaffolds for in-space additive manufacturing. In: Thermal and Fluids Analysis Workshop Conference. https://www.researchgate.net/publication/377628724_Multiphysics_Modeling_of_3D_Bioprinting_of_Polycaprolactone_Scaffolds_for_in-Space_Additive_Manufacturing [Accessed on July 25, 2024]
155. Windisch J, Reinhardt O, Duin S et al (2023) Bioinks for space missions: the influence of long-term storage of alginate-methylcellulose-based bioinks on printability as well as cell viability and function. Adv Healthc Mater 12(23):e2300436. https://doi.org/10.1002/adhm.202300436
156. Han YL, Zeger L, Tripathi R et al (2021) Molecular genetic analysis of neural stem cells after space flight and simulated microgravity on earth. Biotechol Bioeng 118(10):3832–3846. https://doi.org/10.1002/bit.27858
157. Nie J, Gao Q, Fu JZ et al (2020) Grafting of 3D bioprinting to in vitro drug screening: a review. Adv Healthc Mater 9(7):e1901773. https://doi.org/10.1002/adhm.201901773
158. Nie J, Fu JZ, He Y (2020) Hydrogels: the next generation body materials for microfluidic chips? Small 16(46):2003797. https://doi.org/10.1002/smll.202003797
159. Nie J, Gao Q, Wang YD et al (2018) Vessel-on-a-chip with hydrogel-based microfluidics. Small 14(45):e1802368. https://doi.org/10.1002/smll.201802368
160. Nie J, Gao Q, Xie CQ et al (2020) Construction of multi-scale vascular chips and modelling of the interaction between tumours and blood vessels. Mater Horiz 7(1):82–92. https://doi.org/10.1039/c9mh01283d
161. Nie J, Lou S, Pollet A et al (2024) A cell pre-wrapping seeding technique for hydrogel-based tubular organ-on-a-chip. Adv Sci 11(30):2400970. https://doi.org/10.1002/advs.202400970
162. Lv S, Nie J, Gao Q et al (2020) Micro/nanofabrication of brittle hydrogels using 3D printed soft ultrafine fiber molds for damage-free demolding. Biofabrication 12(2):025015. https://doi.org/10.1088/1758-5090/ab57d8
163. Aazmi A, Zhang D, Mazzaglia C et al (2024) Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 31:475–496. https://doi.org/10.1016/j.bioactmat.2023.08.018
164. Ma L, Wu YT, Li YT et al (2020) Current advances on 3D-bioprinted liver tissue models. Adv Healthc Mater 9(24): e2001517. https://doi.org/10.1002/adhm.202001517
165. Ma L, Li YT, Wu YT et al (2020) The construction of in vitro tumor models based on 3D bioprinting. Bio-Des Manuf 3(3): 227–236. https://doi.org/10.1007/s42242-020-00068-6
166. Ma L, Li YT, Wu YT et al (2020) 3D bioprinted hyaluronic acid-based cell-laden scaffold for brain microenvironment simulation. Bio-Des Manuf 3(3):164–174. https://doi.org/10.1007/s42242-020-00076-6
167. Lv WK, Zhou HZ, Aazmi A et al (2022) Constructing biomimetic liver models through biomaterials and vasculature engineering. Regener Biomater 9:rbac079. https://doi.org/10.1093/rb/rbac079
168. Aazmi A, Zhou HZ, Lv WK et al (2022) Vascularizing the brain. iScience 25(4):104110. https://doi.org/10.1016/j.isci.2022.104110
169. Aazmi A, Zhou HZ, Li YT et al (2022) Engineered vasculature for organ-on-a-chip systems. Engineering 9(2):131–147. https://doi.org/10.1016/j.eng.2021.06.020
170. Aazmi A, Guo ZX, Yu HR et al (2023) Enhanced mixing efficiency for a novel 3D Tesla micromixer for Newtonian and non-Newtonian fluids. J Zhejiang Univ-Sci A (Appl Phys & Eng) 24(12): 1065–1078. https://doi.org/10.1631/jzus.A2300589
171. Jian HL, Wang MY, Wang ST et al (2018) 3D bioprinting for cell culture and tissue fabrication. Bio-Des Manuf 1(1):45–61. https://doi.org/10.1007/s42242-018-0006-1
172. Li X, Jian HL, Han QQ et al (2023) Three-dimensional (3D) bioprinting of medium toughened dipeptide hydrogel scaffolds with Hofmeister effect. J Colloid Interface Sci 639:1–6. https://doi.org/10.1016/j.jcis.2023.02.033
173. Jian HL, Wang MY, Dong QQ et al (2019) Dipeptide self-assembled hydrogels with tunable mechanical properties and degradability for 3D bioprinting. ACS Appl Mater Interfaces 11(50): 46419–46426. https://doi.org/10.1021/acsami.9b13905
174. Dong QQ, Su X, Li X et al (2023) In vitro construction of lung cancer organoids by 3D bioprinting for drug evaluation. Colloid Surf A Physicochem Eng Aspect 666:131288. https://doi.org/10.1016/j.colsurfa.2023.131288
175. Jian HL, Li X, Dong QQ et al (2023) In vitro construction of liver organoids with biomimetic lobule structure by a multicellular 3D bioprinting strategy. Cell Prolif 56(5):e13465. https://doi.org/10.1111/cpr.13465
176. Birey F, Andersen J, Makinson CD et al (2017) Assembly of functionally integrated human forebrain spheroids. Nature 545(7652): 54–59. https://doi.org/10.1038/nature22330
177. Pasca SP (2019) Assembling human brain organoids. Science 363(6423):126–127. https://doi.org/10.1126/science.aau5729
178. Kanton S, Pasca SP (2022) Human assembloids. Development 149(20):dev201120. https://doi.org/10.1242/dev.201120
179. Liu TK, Zhou C, Ji JY et al (2023) Spheroid on-demand printing and drug screening of endothelialized hepatocellular carcinoma model at different stages. Biofabrication 15(4):44102. https://doi.org/10.1088/1758-5090/ace3f9
180. Zhang YM, Hu QF, Pei YQ et al (2024) A patient-specific lung cancer assembloid model with heterogeneous tumor microenvironments. Nat Commun 15(1):3382. https://doi.org/10.1038/s41467-024-47737-z
181. Wei Q, Sun D, Li M et al (2023) Modification of hydroxyapatite (HA) powder by carboxymethyl chitosan (CMCS) for 3D printing bioceramic bone scaffolds. Ceramics International 49(1): 538–547. https://doi.org/10.1016/j.ceramint.2022.09.021
182. Gillman CE, Jayasuriya AC (2021) FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C 130:112466. https://doi.org/10.1016/j.msec.2021.112466
183. Li XP, Wang YE, Zhang B et al (2022) The design and evaluation of bionic porous bone scaffolds in fluid flow characteristics and mechanical properties. Comput Meth Prog Biomed 225:107059. https://doi.org/10.1016/j.cmpb.2022.107059
184. Wei QH, Wang YE, Li XP et al (2016) Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds. J Mech Behav Biomed Mater 57:190–200. https://doi.org/10.1016/j.jmbbm.2015.12.007
185. Wei QH, Wang YE, Chai WH et al (2017) Molecular dynamics simulation and experimental study of the bonding properties of polymer binders in 3D powder printed hydroxyapatite bioceramic bone scaffolds. Ceram Int 43(16):13702–13709. https://doi.org/10.1016/j.ceramint.2017.07.082
186. Chai WH, Wei QH, Yang MM et al (2020) The printability of three water based polymeric binders and their effects on the properties of 3D printed hydroxyapatite bone scaffold. Ceram Int 46(5): 6663–6671. https://doi.org/10.1016/j.ceramint.2019.11.154
187. Zhang HJ, Wu CT (2023) 3D printing of biomaterials for vascularized and innervated tissue regeneration. Int J Bioprint 9(3):706. https://doi.org/10.18063/ijb.706
188. Zhang M, Lin RC, Wang X et al (2020) 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Sci Adv 6(12):eaaz6725. https://doi.org/10.1126/sciadv.aaz6725
189. Zhang HJ, Zhang M, Zhai D et al (2023) Polyhedron-like biomaterials for innervated and vascularized bone regeneration. Adv Mater 35(42):e2302716. https://doi.org/10.1002/adma.202302716
190. Feng C, Zhang WJ, Deng CJ et al (2017) 3D printing of lotus root-like biomimetic materials for cell delivery and tissue regeneration. Adv Sci 4(12):1700401. https://doi.org/10.1002/advs.201700401
191. Zhang WJ, Feng C, Yang GZ et al (2017) 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials 135:85–95. https://doi.org/10.1016/j.biomaterials.2017.05.005
192. Li T, Zhai D, Ma B et al (2019) 3D printing of hot dog-like biomaterials with hierarchical architecture and distinct bioactivity. Adv Sci 6(19):1901146. https://doi.org/10.1002/advs.201901146
193. Yang ZB, Xue JM, Shi Z et al (2024) Naturally derived flexible bioceramics: biomass recycling approach and advanced function. Matter 7(3):1275–1291. https://doi.org/10.1016/j.matt.2024.01.016
194. Li MM, Ma HS, Han F et al (2021) Microbially catalyzed biomaterials for bone regeneration. Adv Mater 33(49):e2104829. https://doi.org/10.1002/adma.202104829
195. Deng CJ, Lin RC, Zhang M et al (2019) Micro/Nanometer-structured scaffolds for regeneration of both cartilage and subchondral bone. Adv Funct Mater 29(4):1806068. https://doi.org/10.1002/adfm.201806068
196. Yu XP, Wang YF, Zhang M et al (2023) 3D printing of gear-inspired biomaterials: immunomodulation and bone regeneration. Acta Biomater 156:222–233. https://doi.org/10.1016/j.actbio.2022.09.008
197. Qin C, Zhang HJ, Chen L et al (2023) Cell-laden scaffolds for vascular-innervated bone regeneration. Adv Healthc Mater 12(13): e2201923. https://doi.org/10.1002/adhm.202201923
198. Zhang HJ, Qin C, Zhang M et al (2022) Calcium silicate nanowires-containing multicellular bioinks for 3D bioprinting of neural-bone constructs. Nano Today 46:101584. https://doi.org/10.1016/j.nantod.2022.101584
199. Zhang HJ, Qin C, Shi Z et al (2024) Bioprinting of inorganic-biomaterial/neural-stem-cell constructs for multiple tissue regeneration and functional recovery. Natl Sci Rev 11(4):nwae035. https://doi.org/10.1093/nsr/nwae035
200. Du L, Qin C, Zhang HJ et al (2023) Multicellular bioprinting of biomimetic inks for tendon-to-bone regeneration. Adv Sci 10(21): e2301309. https://doi.org/10.1002/advs.202301309
201. Du L, Wu JF, Han YH et al (2024) Immunomodulatory multicellular scaffolds for tendon-to-bone regeneration. Sci Adv 10(10): eadk6610. https://doi.org/10.1126/sciadv.adk6610
202. Qin C, Ma JG, Chen L et al (2021) 3D bioprinting of multicellular scaffolds for osteochondral regeneration. Mater Today 49:68–84. https://doi.org/10.1016/j.mattod.2021.04.016
203. Deng CJ, Qin C, Li ZG et al (2024) Diatomite-incorporated hierarchical scaffolds for osteochondral regeneration. Bioact Mater 38:305–320. https://doi.org/10.1016/j.bioactmat.2024.05.004
204. Gaharwar AK, Singh I, Khademhosseini A (2020) Engineered biomaterials for in situ tissue regeneration. Nat Rev Mater 5(9): 686–705. https://doi.org/10.1038/s41578-020-0209-x
205. He HM, Li D, Lin ZF et al (2020) Temperature-programmable and enzymatically solidifiable gelatin-based bioinks enable facile extrusion bioprinting. Biofabrication 12(4):045003. https://doi.org/10.1088/1758-5090/ab9906
206. Gao CJ, Tang L, Qu HW et al (2023) A small-molecule polycationic crosslinker boosts alginate-based bioinks for extrusion bioprinting. Adv Funct Mater 34(9):2310369. https://doi.org/10.1002/adfm.202310369
207. Zhai XY, Ruan CS, Ma YF et al (2018) 3D-bioprinted osteoblastladen nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both in vitro and in vivo. Adv Sci 5(3):1700550. https://doi.org/10.1002/advs.201700550
208. Yang JR, Chen ZG, Gao CJ et al (2024) A mechanical-assisted post-bioprinting strategy for challenging bone defects repair. Nat Commun 15(1):3565. https://doi.org/10.1038/s41467-024-48023-8
209. Qin Y, Wen P, Guo H et al (2019) Additive manufacturing of biodegradable metals: current research status and future perspectives. Acta Biomater 98:3–22. https://doi.org/10.1016/j.actbio.2019.04.046
210. Qin Y, Liu JG, Chen YZ et al (2021) Influence of laser energy input and shielding gas flow on evaporation fume during laser powder bed fusion of Zn metal. Materials 14(10):2677. https://doi.org/10.3390/ma14102677
211. Wen P, Voshage M, Jauer L et al (2018) Laser additive manufacturing of Zn metal parts for biodegradable applications: processing, formation quality and mechanical properties. Mater Des 155: 36–45. https://doi.org/10.1016/j.matdes.2018.05.057
212. Wen P, Qin Y, Chen YZ et al (2019) Laser additive manufacturing of Zn porous scaffolds: shielding gas flow, surface quality and densification. J Mater Sci Technol 35(2):368–376. https://doi.org/10.1016/j.jmst.2018.09.065
213. Wang X, Liu AB, Zhang ZB et al (2024) Additively manufactured Zn-2Mg alloy porous scaffolds with customizable biodegradable performance and enhanced osteogenic ability. Adv Sci 11(5):e2307329. https://doi.org/10.1002/advs.202307329
214. Liu JG, Liu BC, Min SY et al (2022) Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: process optimization, in vitro and in vivo investigation. Bioact Mater 16:301–319. https://doi.org/10.1016/j.bioactmat.2022.02.020
215. Peng B, Wei Y, Qin Y et al (2023) Machine learning-enabled constrained multi-objective design of architected materials. Nat Commun 14(1):6630. https://doi.org/10.1038/s41467-023-42415-y
216. Liu JE, Yin BZ, Song F et al (2024) Improving corrosion resistance of additively manufactured WE43 magnesium alloy by high temperature oxidation for biodegradable applications. JMA 12(3): 940–953. https://doi.org/10.1016/j.jma.2022.08.009
217. Li S, Yang HT, Qu XH et al (2024) Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis. Nat Commun 15(1):3131. https://doi.org/10.1038/s41467-024-47189-5
218. Zhang ZB, Liu AB, Fan JD et al (2023) A drug-loaded composite coating to improve osteogenic and antibacterial properties of Zn–1Mg porous scaffolds as biodegradable bone implants. Bioact Mater 27:488–504. https://doi.org/10.1016/j.bioactmat.2023.04.017
219. Yin BZ, Liu JE, Peng B et al (2024) Influence of layer thickness on formation quality, microstructure, mechanical properties, and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion. JMA 12(4):1367–1385. https://doi.org/10.1016/j.jma.2022.09.016
220. Qin Y, Liu AB, Guo H et al (2022) Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: in vitro and in vivo studies. Acta Biomater 145:403–415. https://doi.org/10.1016/j.actbio.2022.03.055
221. Wang CX, Liu JE, Min SY et al (2023) The effect of pore size on the mechanical properties, biodegradation and osteogenic effects of additively manufactured magnesium scaffolds after high temperature oxidation: an in vitro and in vivo study. Bioact Mater 28:537–548. https://doi.org/10.1016/j.bioactmat.2023.06.009
222. Liu BC, Liu JE, Wang CX et al (2024) High temperature oxidation treated 3D printed anatomical WE43 alloy scaffolds for repairing periarticular bone defects: in vitro and in vivo studies. Bioact Mater 32:177–189. https://doi.org/10.1016/j.bioactmat.2023.09.016
223. Gao F, Xu ZY, Liang QF et al (2018) Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect. Adv Funct Mater 28(13):13. https://doi.org/10.1002/adfm.201706644
224. Gao F, Xu ZY, Liang QF et al (2019) Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds. Adv Sci 6(15): 1900867. https://doi.org/10.1002/advs.201900867
225. Liu YZ, Peng LQ, Li LL et al (2021) 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials 279: 121216. https://doi.org/10.1016/j.biomaterials.2021.121216
226. Zhang YJ, Li D, Liu Y et al (2024) 3D-bioprinted anisotropic bicellular living hydrogels boost osteochondral regeneration via reconstruction of cartilage-bone interface. Innovation 5(1):100542. https://doi.org/10.1016/j.xinn.2023.100542
227. Gui XY, Peng ZY, Song P et al (2023) 3D printing of personalized polylactic acid scaffold laden with GelMA/autologous auricle cartilage to promote ear reconstruction. Bio-Des Manuf 6(4): 451–463. https://doi.org/10.1007/s42242-023-00242-6
228. Tang P, Song P, Peng ZY et al (2021) Chondrocyte-laden GelMA hydrogel combined with 3D printed PLA scaffolds for auricle regeneration. Mater Sci Eng C Mater Biol Appl 130:112423. https://doi.org/10.1016/j.msec.2021.112423
229. Han Y, Jia B, Lian MF et al (2021) High-precision, gelatin-based, hybrid, bilayer scaffolds using melt electro-writing to repair cartilage injury. Bioact Mater 6(7):2173–2186. https://doi.org/10.1016/j.bioactmat.2020.12.018
230. Han Y, Lian MF, Sun BB et al (2020) Preparation of high precision multilayer scaffolds based on melt electro-writing to repair cartilage injury. Theranostics 10(22):10214–10230. https://doi.org/10.7150/thno.47909
231. Han Y, Lian MF, Zhang CY et al (2022) Study on bioactive PEGDA/ECM hybrid bi-layered hydrogel scaffolds fabricated by electro-writing for cartilage regeneration. Appl Mater Today 28: 101547. https://doi.org/10.1016/j.apmt.2022.101547
232. Qiao ZG, Lian MF, Han Y et al (2021) Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration. Biomaterials 266:120385. https://doi.org/10.1016/j.biomaterials.2020.120385
233. Ding CM, Qiao ZG, Jiang WB et al (2013) Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials 34(28):6706–6716. https://doi.org/10.1016/j.biomaterials.2013.05.038
234. Sun Y, Zhao J, Wu Q et al (2022) Chondrogenic primed extracellular vesicles activate miR-455/SOX11/FOXO axis for cartilage regeneration and osteoarthritis treatment. npj Regener Med 7(1):53. https://doi.org/10.1038/s41536-022-00250-7
235. Lian MF, Sun BB, Han Y et al (2021) A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cellmaterial interaction and modulates paracrine activity of MSCs for vascularized bone regeneration. Biomaterials 274:120841. https://doi.org/10.1016/j.biomaterials.2021.120841
236. Cao BJ, Lin JM, Tan J et al (2023) 3D-printed vascularized biofunctional scaffold for bone regeneration. Int J Bioprint 9(3): 185–199. https://doi.org/10.18063/ijb.702
237. Hao YQ, Cao BJ, Deng L et al (2023) The first 3D-bioprinted personalized active bone to repair bone defects: a case report. Int J Bioprint 9(2):70–75. https://doi.org/10.18063/ijb.v9i2.654
238. Xue Y, Li JL, Jiang TH et al (2024) Biomimetic conductive hydrogel scaffolds with anisotropy and electrical stimulation for in vivo skeletal muscle reconstruction. Adv Healthc Mater 13(4): e2302180. https://doi.org/10.1002/adhm.202302180
239. Fan TT, Wang S, Jiang ZM et al (2022) Controllable assembly of skeletal muscle-like bundles through 3D bioprinting. Biofabrication 14(1):15009. https://doi.org/10.1088/1758-5090/ac3aca
240. Wang L, Li T, Wang ZH et al (2022) Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration. Biomaterials 285:121537. https://doi.org/10.1016/j.biomaterials.2022.121537
241. Gao ZQ, Liu X, Zhao H et al (2023) Synthesis of easilyprocessable collagen bio-inks using ionic liquid for 3D bioprinted liver tissue models with branched vascular networks. Sci China Chem 66(5):1489–1499. https://doi.org/10.1007/s11426-022-1472-6
242. Huang YM, Zhao H, Wang XH et al (2022) Polyurethanegelatin methacryloyl hybrid ink for 3D printing of biocompatible and tough vascular networks. Chem Commun 58(49):6894–6897. https://doi.org/10.1039/d2cc02176e
243. Guo BJ, Duan YC, Li ZW et al (2023) High-strength cell sheets and vigorous hydrogels from mesenchymal stem cells derived from human embryonic stem cells. ACS Appl Mater Interfaces 15(23):27586–27599. https://doi.org/10.1021/acsami.3c03117
244. Liu X, Wang XH, Zhang LM et al (2021) 3D liver tissue model with branched vascular networks by multimaterial bioprinting. Adv Healthc Mater 10(23):e2101405. https://doi.org/10.1002/adhm.202101405
245. Wang XH, Liu X, Liu WL et al (2023) 3D bioprinting microgels to construct implantable vascular tissue. Cell Prolif 56(5):e13456. https://doi.org/10.1111/cpr.13456
246. Wang HR, Liu X, Gu Q et al (2023) Vascularized organ bioprinting: from strategy to paradigm. Cell Prolif 56(5):e13453. https://doi.org/10.1111/cpr.13453
247. Pimentel CR, Ko SK, Caviglia C et al (2018) Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network. Acta Biomater 65:174–184. https://doi.org/10.1016/j.actbio.2017.10.047
248. Szklanny AA, Machour M, Redenski I et al (2021) 3D bioprinting of engineered tissue flaps with hierarchical vessel networks (VesselNet) for firect host-to-implant perfusion. Adv Mater 33(42): e2102661. https://doi.org/10.1002/adma.202102661
249. Liu X, Wang XH, Zhang LM et al (2021) 3D liver tissue model with branched vascular networks by multimaterial bioprinting. Adv Healthc Mater 10(23):e2101405. https://doi.org/10.1002/adhm.202101405
250. Wang HR, Liu X, Gu Q et al (2023) Vascularized organ bioprinting: from strategy to paradigm. Cell Prolif 56(5):e13453. https://doi.org/10.1111/cpr.13453
251. Gao Q, Liu ZJ, Lin ZW et al (2017) 3D bioprinting of vessellike structures with multilevel fluidic channels. ACS Biomater Sci Eng 3(3):399–408. https://doi.org/10.1021/acsbiomaterials.6b00643
252. Jin Y, Xie CQ, Gao Q et al (2021) Fabrication of multi-scale and tunable auxetic scaffolds for tissue engineering. Mater Des 197:109277. https://doi.org/10.1016/j.matdes.2020.109277
253. Xie CQ, Gao Q, Wang P et al (2019) Structure-induced cell growth by 3D printing of heterogeneous scaffolds with ultrafine fibers. Mater Des 181:108092. https://doi.org/10.1016/j.matdes.2019.108092
254. Gao Q, He Y, Fu JZ et al (2015) Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Bio-materials 61:203–215. https://doi.org/10.1016/j.biomaterials.2015.05.031
255. Shao L, Gao Q, Xie CQ et al (2020) Synchronous 3D bioprinting of large-scale cell-laden constructs with nutrient networks. Adv Healthc Mater 9(15):e1901142. https://doi.org/10.1002/adhm.201901142
256. Gu ZM, Xie MJ, Lv S et al (2022) Perfusable vessel-on-a-chip for antiangiogenic drug screening with coaxial bioprinting. Int J Bioprint 8(4):619. https://doi.org/10.18063/ijb.v8i4.619
257. Meng ZJ, He JK, Li JX et al (2020) Melt-based, solvent-free additive manufacturing of biodegradable polymeric scaffolds with designer microstructures for tailored mechanical/biological properties and clinical applications. Virt Phys Prototy 15(4):417–444. https://doi.org/10.1080/17452759.2020.1808937
258. Meng ZJ, He JK, Cai ZH et al (2020) In-situ re-melting and resolidification treatment of selective laser sintered polycaprolactone lattice scaffolds for improved filament quality and mechanical properties. Biofabrication 12(3):035012. https://doi.org/10.1088/1758-5090/ab860e
259. Zeng XB, Meng ZJ, Qiu ZN et al (2023) Melt-based embedded printing for freeform fabrication of overhanging and flexible polycaprolactone scaffolds. Virt Phys Prototy 18(1):e2209778. https://doi.org/10.1080/17452759.2023.2209778
260. Yao C, Qiu ZN, Li X et al (2023) Electrohydrodynamic printing of microfibrous architectures with cell-scale spacing for improved cellular migration and neurite outgrowth. Small 19(19):e2207331. https://doi.org/10.1002/smll.202207331
261. Zhang B, He JK, Li X et al (2016) Micro/nanoscale electrohydrodynamic printing: from 2D to 3D. Nanoscale 8(34):15376–15388. https://doi.org/10.1039/c6nr04106j
262. He JK, Xia P, Li DC (2016) Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds. Biofabrication 8(3):035008. https://doi.org/10.1088/1758-5090/8/3/035008
263. He JK, Zhang B, Li Z et al (2020) High-resolution electrohydrodynamic bioprinting: a new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs. Biofabrication 12(4):042002. https://doi.org/10.1088/1758-5090/aba1fa
264. Meng ZJ, Mu XD, He JK et al (2023) Embedding aligned nanofibrous architectures within 3D-printed polycaprolactone scaffolds for directed cellular infiltration and tissue regeneration. Int J Extrem Manuf 5(2):025001. https://doi.org/10.1088/2631-7990/acbd6c
265. Hu SG, Meng ZJ, Zhou JP et al (2022) Enhanced attachment and collagen type I deposition of MC3T3-E1 cells via electrohydrodynamic printed sub-microscale fibrous architectures. Int J Bioprint 8(2):514. https://doi.org/10.18063/ijb.v8i2.514
266. Meng ZJ, He JK, Li DC (2021) Additive manufacturing and large deformation responses of highly-porous polycaprolactone scaffolds with helical architectures for breast tissue engineering. VPP 16(3):291–305. https://doi.org/10.1080/17452759.2021.1930069
267. Liu WH, Meng ZJ, Zheng KF et al (2021) Development of three-dimensional printed biodegradable external airway splints with native-like shape and mechanical properties for tracheomalacia treatment. Mater Des 210:110105. https://doi.org/10.1016/j.matdes.2021.110105
268. Meng ZJ, He JK, Cai ZH et al (2020) Design and additive manufacturing of flexible polycaprolactone scaffolds with highlytunable mechanical properties for soft tissue engineering. Mater Des 189:108508. https://doi.org/10.1016/j.matdes.2020.108508
269. Liu YJ, Zheng KF, Meng ZJ et al (2023) A cell-free tissue-engineered tracheal substitute with sequential cytokine release maintained airway opening in a rabbit tracheal full circumferential defect model. Biomaterials 300:122208. https://doi.org/10.1016/j.biomaterials.2023.122208
270. Wang L, Li DC, He JK et al (2018) Research center of biomanufacturing in Xi’an Jiaotong University. Bio-Des Manuf 1(4):280–288. https://doi.org/10.1007/s42242-018-0026-x
271. Hou L, Yan CJ, Zhang MK et al (2024) A novel 3D-printed scaffold for patient-specific partial breast reconstruction: a prospective, single-arm clinical trial. J Clin Oncol 42(16):e23227. https://doi.org/10.1200/JCO.2024.42.16_suppl.e23227
272. Huang LJ, Wang L, He JK et al (2016) Tracheal suspension by using 3-dimensional printed personalized scaffold in a patient with tracheomalacia. J Thorac Disease 8(11):3323–3328. https://doi.org/10.21037/jtd.2016.10.53
273. Yu D, Peng W, Mo XM et al (2022) Personalized 3D-printed bioresorbable airway external splint for tracheomalacia combined with congenital heart disease. Front Bioeng Biotechnol 10:859777. https://doi.org/10.3389/fbioe.2022.859777
274. Han YH, Yin Q, Wang Y et al (2018) Three-dimensional printed degradable splint in the treatment of pulmonary artery sling associated with severe bilateral bronchus stenosis. Cardiol Young 28(12):1477–1480. https://doi.org/10.1017/s1047951118001579
275. Wang L, Liu WH, He JK et al (2019) Treatment of bronchomalacia using three-dimensional printed polycaprolactone scaffold in a pediatric patient. J Thorac Cardiovasc Surg 157(5):e287–e290. https://doi.org/10.1016/j.jtcvs.2018.11.095
276. Zhang F, Zhang M, Liu S et al (2022) Application of hybrid electrically conductive hydrogels promotes peripheral nerve regeneration. Gels 8(1):41. https://doi.org/10.3390/gels8010041
277. Zhang CY, Gong JX, Zhang JY et al (2023) Three potential elements of developing nerve guidance conduit for peripheral nerve regeneration. Adv Funct Mater 33(40):2302251. https://doi.org/10.1002/adfm.202302251
278. You DQ, Chen GC, Liu C et al (2021) 4D printing of multiresponsive membrane for accelerated in vivo bone healing via remote regulation of stem cell fate. Adv Funct Mater 31(40): 2103920. https://doi.org/10.1002/adfm.202103920
279. Sun MY, You DQ, Zhan N et al (2023) 4D oriented dynamic scaffold for promoting peripheral nerve regeneration and functional recovery. Adv Funct Mater 34(2):2305827. https://doi.org/10.1002/adfm.202305827
280. Qian Y, Gong JX, Lu KJ et al (2023) DLP printed hDPSC-loaded GelMA microsphere regenerates dental pulp and repairs spinal cord. Biomaterials 299:122137. https://doi.org/10.1016/j.biomaterials.2023.122137
281. Qiu C, Sun Y, Li JY et al (2023) A 3D-printed dual driving forces scaffold with self-promoted cell absorption for spinal cord injury repair. Adv Sci 10(33):e2301639. https://doi.org/10.1002/advs.202301639
282. Karna S, Lee JE, Kim YS et al (2023) Comprehensive feasibility evaluation of small-diameter 3D templated vascular graft via physical characterizations and in-vivo experiments. Biomed Mater 18(5): 55018. https://doi.org/10.1088/1748-605X/aceced
283. Atari M, Saroukhani A, Manshaei M et al (2023) Preclinical in vivo assessment of a cell-free multi-layered scaffold prepared by 3D printing and electrospinning for small-diameter blood vessel tissue engineering in a canine model. Biomater Sci 11(20):6871–6880. https://doi.org/10.1039/d3bm00642e
284. Zhi DK, Cheng QH, Midgley AC et al (2022) Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering. Sci Adv 8(11):eabl3888. https://doi.org/10.1126/sciadv.abl3888
285. Shao L, Gao Q, Xie CQ et al (2020) Directly coaxial 3D bioprinting of large-scale vascularized tissue constructs. Biofabrication 12(3):035014. https://doi.org/10.1088/1758-5090/ab7e76
286. Gu ZM, Xie MJ, Lv S et al (2022) Perfusable vessel-on-a-chip for antiangiogenic drug screening with coaxial bioprinting. Int J Bioprint 8(4):292–306. https://doi.org/10.18063/ijb.v8i4.619
287. Pan BC, Shao L, Jiang JH et al (2022) 3D printing sacrificial templates for manufacturing hydrogel constructs with channel networks. Mater Des 222:111012. https://doi.org/10.1016/j.matdes.2022.111012
288. Zhang SS, Qi C, Zhang W et al (2023) In situ endothelialization of free-form 3D network of interconnected tubular channels via interfacial coacervation by aqueous-in-aqueous embedded bioprinting. Adv Mater 35(7):e2209263. https://doi.org/10.1002/adma.202209263
289. Song BW, Wang CW, Fan SY et al (2023) Rapid construction of 3D biomimetic capillary networks with complex morphology using dynamic holographic processing. Adv Funct Mater 34(1): 2305345. https://doi.org/10.1002/adfm.202305245
290. Jorgensen AM, Yoo JJ, Atala A (2020) Solid organ bioprinting: strategies to achieve organ function. Chem Rev 120(19):11093–11127. https://doi.org/10.1021/acs.chemrev.0c00145
291. Gu Z, Guo J, Zhai JL et al (2022) A uterus-inspired niche drives blastocyst development to the early organogenesis. Adv Sci 9(28): e2202282. https://doi.org/10.1002/advs.202202282
292. Fedorovich NE, Schuurman W, Wijnberg HM et al (2012) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 18(1):33–44. https://doi.org/10.1089/ten.TEC.2011.0060
293. Gu Q, Tomaskovic-Crook E, Lozano R et al (2016) Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv Healthc Mater 5(12):1429–1438. https://doi.org/10.1002/adhm.201600095
294. Fan TT, Wang S, Jiang ZM et al (2021) Controllable assembly of skeletal muscle-like bundles through 3D bioprinting. Biofabrication 14(1):15009. https://doi.org/10.1088/1758-5090/ac3aca
295. Ouyang LL, Yao R, Mao SS et al (2015) Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation. Biofabrication 7(4):044101. https://doi.org/10.1088/1758-5090/7/4/044101
296. Gu Q, Tomaskovic-Crook E, Wallace GG et al (2017) 3D bioprinting human induced pluripotent stem cell constructs for in situ cell proliferation and successive multilineage differentiation. Adv Healthc Mater 6(17):1700175. https://doi.org/10.1002/adhm.201700175
297. Guo J, Li YY, Gao ZL et al (2022) 3D printed controllable microporous scaffolds support embryonic development in vitro. J Cell Physiol 237(8):3408–3420. https://doi.org/10.1002/jcp.30810
298. Mao M, Meng ZJ, Huang XX et al (2024) 3D printing in space: from mechanical structures to living tissues. Int J Extrem Manuf 6(2):023001. https://doi.org/10.1088/2631-7990/ad23ef
299. Zhu H, Yao C, Wei BY et al (2023) 3D printing of functional bioengineered constructs for neural regeneration: a review. Int J Extrem Manuf 5(4):042004. https://doi.org/10.1088/2631-7990/ace56c
300. Mao M, Bei HP, Lam CH et al (2020) Human-on-leaf-chip: a biomimetic vascular system integrated with chamber-specific organs. Small 16(22):e2000546. https://doi.org/10.1002/smll.202000546
301. Lei Q, He JK, Li DC (2019) Electrohydrodynamic 3D printing of layer-specifically oriented, multiscale conductive scaffolds for cardiac tissue engineering. Nanoscale 11(32):15195–15205. https://doi.org/10.1039/c9nr04989d
302. Mao M, Qu XL, Zhang YB et al (2023) Leaf-venation-directed cellular alignment for macroscale cardiac constructs with tissuelike functionalities. Nat Commun 14(1):2077. https://doi.org/10.1038/s41467-023-37716-1
303. Mao M, Meng ZJ, He JK et al (2024) Microphysiological systems inspired by leaf venation. Trends Biotechnol 42(11):1331–1334. https://doi.org/10.1016/j.tibtech.2024.03.011
304. Wang S, Bai LG, Hu XX et al (2023) 3D bioprinting of neurovascular tissue modeling with collagen-based low-viscosity composites. Adv Healthc Mater 12(25):e2300004. https://doi.org/10.1002/adhm.202300004
305. Lei D, Yang Y, Liu ZH et al (2019) 3D printing of biomimetic vasculature for tissue regeneration. Mater Horiz 6(6):1197–1206. https://doi.org/10.1039/c9mh00174c
306. Duan JH, Lei D, Ling C et al (2022) Three-dimensional-printed polycaprolactone scaffolds with interconnected hollow-pipe structures for enhanced bone regeneration. Regen Biomater 9:rbac033. https://doi.org/10.1093/rb/rbac033
307. Ha YJ, Ma XJ, Li SK et al (2022) Bone microenvironment-mimetic scaffolds with hierarchical microstructure for enhanced vascularization and bone regeneration. Adv Funct Mater 32(20):2200011. https://doi.org/10.1002/adfm.202200011
308. Huang SX, Lei D, Yang Q et al (2021) A perfusable, multifunctional epicardial device improves cardiac function and tissue repair. Nat Med 27(3):480–490. https://doi.org/10.1038/s41591-021-01279-9
309. Kong LC, Gao X, Yao XY (2024) Multilevel neurium-mimetic individualized graft via additive manufacturing for efficient tissue repair. Nat Commun 15(1):6428. https://doi.org/10.1038/s41467-024-49980-w
310. Shamloul R, Ghanem H (2013) Erectile dysfunction. Lancet 381(9861):153–165. https://doi.org/10.1016/S0140-6736(12)60520-0
311. Ren Y, Yuan J, Xue YG et al (2023) Advanced hydrogels: new expectation for the repair of organic erectile dysfunction. Mater Today Bio 19:100588. https://doi.org/10.1016/j.mtbio.2023.100588
312. Andrew TW, Kanapathy M, Murugesan L et al (2019) Towards clinical application of tissue engineering for erectile penile regeneration. Nat Rev Urol 16(12):734–744. https://doi.org/10.1038/s41585-019-0246-7
313. An G, Guo FX, Liu XM et al (2020) Functional reconstruction of injured corpus cavernosa using 3D-printed hydrogel scaffolds seeded with HIF-1α-expressing stem cells. Nat Commun 11(1):2687. https://doi.org/10.1038/s41467-020-16192-x
314. Chai MY, Zhong WW, Yan ST et al (2024) Diffusion-induced phase separation 3D printed scaffolds for dynamic tissue repair. BMEMat 2(3):e12108. https://doi.org/10.1002/bmm2.12108
315. Chai MY, Zhai ZC, Liu XM et al (2023) Bionic artificial penile Tunica albuginea. Matter 6(2):626–641. https://doi.org/10.1016/j.matt.2022.11.032
316. Liu XM, Wu K, Gao L et al (2022) Biomaterial strategies for the application of reproductive tissue engineering. Bioact Mater 14:86–96. https://doi.org/10.1016/j.bioactmat.2021.11.023
317. Liu J, Zhou ZT, Zhang M et al (2022) Simple and robust 3D bioprinting of full-thickness human skin tissue. Bioengineered 13(4): 10090–10100. https://doi.org/10.1080/21655979.2022.2063651
318. Zhao M, Wang J, Zhang JX et al (2022) Functionalizing multicomponent bioink with platelet-rich plasma for customized in-situ bilayer bioprinting for wound healing. Mater Today Bio 16:100334. https://doi.org/10.1016/j.mtbio.2022.100334
319. Chen HY, Zhang Y, Zhou DZ et al (2022) Mechanical engineering of hair follicle regeneration by in situ bioprinting. Biomater Adv 142:213127. https://doi.org/10.1016/j.bioadv.2022.213127
320. Yao B, Wang R, Wang YH et al (2020) Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration. Sci Adv 6(10):eaaz1094. https://doi.org/10.1126/sciadv.aaz1094
321. Liu YY, Liu X, Guo HT et al (2024) 3D bioprinting bioglass to construct vascularized full-thickness skin substitutes for wound healing. Mater Today Bio 24:100899. https://doi.org/10.1016/j.mtbio.2023.100899
322. Jin RH, Cui YC, Chen HJ et al (2021) Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Acta Biomater 131:248–261. https://doi.org/10.1016/j.actbio.2021.07.012
323. Ma JG, Qin C, Wu JF et al (2021) 3D printing of strontium silicate microcylinder-containing multicellular biomaterial inks for vascularized skin regeneration. Adv Healthc Mater 10(16):e2100523. https://doi.org/10.1002/adhm.202100523
324. Yao B, Zhu DZ, Cui XL et al (2022) Modeling human hypertrophic scars with 3D preformed cellular aggregates bioprinting. Bioact Mater 10:247–254. https://doi.org/10.1016/j.bioactmat.2021.09.004
325. Zhao H, Xu JW, Yuan HT et al (2022) 3D printing of artificial skin patches with bioactive and optically active polymer materials for anti-infection and augmenting wound repair. Mater Horiz 9(1): 342–349. https://doi.org/10.1039/d1mh00508a
326. Sun H, Liu J, Lv FT et al (2021) Selective reaction of conjugated polymers with basic proteins for broad-spectrum antivirulence therapy. NPG Asia Mater 13(1):21. https://doi.org/10.1038/s41427-020-00252-1
327. Zhao WX, Chen HY, Zhang Y et al (2022) Adaptive multi-degree-of-freedom in situ bioprinting robot for hair-follicle-inclusive skin repair: a preliminary study conducted in mice. Bioeng Transl Med 7(3):e10303. https://doi.org/10.1002/btm2.10303
328. Gao Q, Niu XF, Shao L et al (2019) 3D printing of complex GelMA-based scaffolds with nanoclay. Biofabrication 11(3):035006. https://doi.org/10.1088/1758-5090/ab0cf6
329. Phan NV, Rathbun EM, Ouyang YX et al (2023) Biology-driven material design for ischaemic stroke repair. Nat Rev Bioeng 2(1): 44–63. https://doi.org/10.1038/s44222-023-00117-6
330. Camarero-Espinosa S, Beeren I, Liu H et al (2024) 3D nicheinspired scaffolds as a stem cell delivery system for the regeneration of the osteochondral interface. Adv Mater 36(34):e2310258. https://doi.org/10.1002/adma.202310258
331. Hu Y, Cui J, Liu H et al (2022) Single-cell RNA-sequencing analysis reveals the molecular mechanism of subchondral bone cell heterogeneity in the development of osteoarthritis. RMD Open 8(2):e002314. https://doi.org/10.1136/rmdopen-2022-002314
332. Yang Z, Wang B, Liu W et al (2023) In situ self-assembled organoid for osteochondral tissue regeneration with dual functional units. Bioact Mater 27:200–215. https://doi.org/10.1016/j.bioactmat.2023.04.002
333. An JM, Zhang SY, Wu J et al (2024) Assessing bioartificial organ function: the 3P model framework and its validation. Lab Chip 24(6):1586–1601. https://doi.org/10.1039/d3lc01020a
关于本刊
Bio-Design and Manufacturing (中文名《生物设计与制造》) ,简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。
初审迅速 :初审快速退稿,不影响作者投其它期刊。
审稿速度快 :学科编辑24小时初审决定投稿是否进入同行评议阶段;平均评审录用周期约40天;文章录用后及时在线SpringerLink,一般两周左右即被SCI-E检索。
收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。
文章类型 :Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。
期刊主页:
http://www.springer.com/journal/42242
http://www.jzus.zju.edu.cn/ (国内可下载全文)
在线投稿地址:
http://www.editorialmanager.com/bdmj/default.aspx
来源: 生物设计与制造BDM
声明:仅代表作者个人观点,用于研究用途,作者水平有限,如有不科学之处,请在下方留言指正!
|
极客公园 · 义务教育怎样才能变得有趣些?赛欧必弗打算这样干 8 年前 |
|
乐趣微生活 · 妹子住旅店,笑吐血!【NO2】 8 年前 |
|
虹膜 · 可能这是对王家卫研究最透彻的一本中文专著 8 年前 |
|
同道大叔 · 你是聪明人,所以要学会装傻 8 年前 |
|
极果网 · 嫖娼合法了?去这个妓院老婆都支持…… 8 年前 |