专栏名称: Python开发者
人生苦短,我用 Python。伯乐在线旗下账号「Python开发者」分享 Python 相关的技术文章、工具资源、精选课程、热点资讯等。
目录
相关文章推荐
Python中文社区  ·  用 Python 追踪美国国会参议员股票交易 ·  2 天前  
Python爱好者社区  ·  iPhone 16 全系暴跌,简直香疯了! ·  6 天前  
Python中文社区  ·  看懂涨跌信号!对冲基金的动量交易心法 ·  1 周前  
Python爱好者社区  ·  你就是个普通博士,安心去个三四流高校就可以了 ... ·  6 天前  
Python爱好者社区  ·  爆了!目标检测杀疯了 ·  6 天前  
51好读  ›  专栏  ›  Python开发者

python 开发编译器

Python开发者  · 公众号  · Python  · 2017-01-09 21:49

正文

(点击上方蓝字,快速关注我们)


来源:伯乐在线专栏作者 - 下弦月

如有好文章投稿,请点击 → 这里了解详情

如需转载,发送「转载」二字查看说明


引言


最近刚刚用python写完了一个解析protobuf文件的简单编译器,深感ply实现词法分析和语法分析的简洁方便。乘着余热未过,头脑清醒,记下一点总结和心得,方便各位pythoner参考使用。


ply使用


简介


如果你不是从事编译器或者解析器的开发工作,你可能从未听说过ply。ply是基于python的lex和yacc,而它的作者就是大名鼎鼎Python Cookbook, 3rd Edition的作者。可能有些朋友就纳闷了,我一个业务开发怎么需要自己写编译器呢,各位编程大牛说过,中央决定了,要多尝试新的东西。而且了解一些语法解析的姿势,以后自己解析格式复杂的日志或者数学公式,也是非常有帮助的。


针对没有编译基础的童鞋,强烈建议了解一些文法相关的基本概念。轮子哥强烈推荐的parsing techniques以及编译龙虎鲸书,个人感觉都不适合入门学习,在此推荐胡伦俊的编译原理(电子工业出版社),针对概念的例子讲解很多,很适合入门学习。当然也不需要特别深入研究,知道词法分析和语法分析的相关概念和方法就可以愉快的使用ply了。文档链接: http://www.pchou.info/open-source/2014/01/18/52da47204d4cb.html


为了方便大家上手,以求解多元一次方程组为例,讲解一下ply的使用。


例子说明


输入是多个格式为x + 4y - 3.2z = 7的一次方程,为了让例子尽可能简单,做如下限制:


  • 每个方程含有变量的部分在等号左边,常数在等号右边

  • 每个方程不限制变量的个数以及变量的顺序,但每个方程每个变量只允许出现一次

  • 变量的命令规则为小写字母串(x y xx yy abc 均为合法变量名)

  • 变量的系数限制为整数和浮点数,浮点数不允许1.4e8的格式,系数和变量紧邻,且系数不能为0

  • 方程组和方程组之间用, ;隔开


学过线性代数的童鞋肯定知道,只需要将方程组抽象为矩阵,按照线性代数的方法就可以解决。因此只需要将输入方程组解析成右边的矩阵和变量列表即可,剩下的求解过程就可以交给线性代数相关的工具解决。



解析


词法解析


ply中的lex来做词法解析,词法解析的理论有一大堆,但是lex用起来却非常直观,就是用正则表达式的方式将文本字符串解析为一个一个的token,下面的代码就是用lex实现词法解析。


from ply import lex

 

# 空格 制表符 回车这些不可见符号都忽略

t_ignore = ' \t\r'

 

# 解析错误的时候直接抛出异常

def t_error(t):

    raise Exception('error {} at line {}'.format(t.value[0], t.lineno))

 

# 记录行号,方便出错定位

def t_newline(t):

    r'\n+'

    t.lexer.lineno += len(t.value)

 

# 支持c++风格的\\注释

def t_ignore_COMMENT(t):

    r'\/\/[^\n]*'

 

# 变量的命令规则

def t_VARIABLE(t):

    r'[a-z]+'

    return t

 

# 常数命令规则

def t_CONSTANT(t):

    r'\d+(\.\d+)?'

    t.value = float(t.value)

    return t

 

# 输入中支持的符号头token,当然也支持t_PLUS = r'\+'的方式将加号定义为token

literals = '+-,;='

tokens = ('VARIABLE', 'CONSTANT')

 

 

if __name__ == '__main__':

    data = '''

    -x + 2.4y + z = 0; //this is a comment

    9y - z + 7.2x = -1;

    y - z + x = 8

    '''

 

    lexer = lex.lex()

    lexer.input(data)

    while True:

        tok = lexer.token()

        if not tok:

            break

        print tok


直接运行文件就可以将解析的token串打印出来,如下所示,详细的使用文档可以参考ply文档。


LexToken(-,'-',2,5)

LexToken(VARIABLE,'x',2,6)

LexToken(+,'+',2,8)

LexToken(CONSTANT,2.4,2,10)

LexToken(VARIABLE,'y',2,13)

LexToken(+,'+',2,15)

LexToken(VARIABLE,'z',2,17)

LexToken(=,'=',2,19)

LexToken(CONSTANT,0.0,2,21)

LexToken(;,';',2,22)


语法解析


ply中的yacc用作语法分析,虽然复杂的词法分析可以代替简单的语法分析,但类似于编程语言的解析再复杂的词法分析也胜任不了。在使用yacc之前,需要了解上下文无关文法,这部分内容太多太杂,我也只了解部分简单的概念,有兴趣的可以看一看编译原理深入了解。


目前语法分析的方法有两大类,即自下向上的分析方法和自上而下的分析方法。所谓自上而下的分下法就是从文法的开始符号出发,根据文法规则正向推到出给定句子的一种方法,或者说,从树根开始,往下构造语法树,直到建立每个树叶的分析方法。代表算法是LL(1),此算法文法解析能力不强,对文法定义要求比较高,主流的编译器都没有使用。自下而上的分析法是从给定的输入串开始,根据文法规则逐步进行归约,直至归约到文法的开始符号,或者说从语法书的末端开始,步步向上归约,直至归约到根节点的分析方法。代表算法有SLR、LRLR,ply使用的就是LRLR。


因此我们只需要定义文法和规约动作即可,以下就是完整的代码。


# -*- coding=utf8 -*-

 

from ply import (

    lex,

    yacc

)

 

# 空格 制表符 回车这些不可见符号都忽略

t_ignore = ' \t\r'

 

# 解析错误的时候直接抛出异常

def t_error(t):

    raise Exception('error {} at line {}'.format(t.value[0], t.lineno))

 

# 记录行号,方便出错定位

def t_newline(t):

    r'\n+'

    t.lexer.lineno += len(t.value)

 

# 支持c++风格的\\注释

def t_ignore_COMMENT(t):

    r'\/\/[^\n]*'

 

# 变量的命令规则

def t_VARIABLE(t):

    r'[a-z]+'

    return t

 

# 常数命令规则

def t_CONSTANT(t):

    r'\d+(\.\d+)?'

    t.value = float(t.value)

    return t

 

# 输入中支持的符号头token,当然也支持t_PLUS = r'\+'的方式将加号定义为token

literals = '+-,;='

tokens = ('VARIABLE', 'CONSTANT')

 

# 顶层文法,规约的时候equations对应的p[1]是一个列表,包含了方程左边各个变量与系数还有方程左边的常数

def p_start(p):

    """start : equations"""

    var_count, var_list = 0, []

    for left, _ in p[1]:

        for con, var_name in left:

            if var_name in var_list:

                continue

            var_list.append(var_name)

            var_count += 1

 

    matrix = [[0] * (var_count + 1) for _ in xrange(len(p[1]))]

    for counter, eq in enumerate(p[1]):

        left, right = eq

        for con, var_name in left:

            matrix[counter][var_list.index(var_name)] = con

        matrix[counter][-1] = -right

 

    var_list.append(1)

    p[0] = matrix, var_list

 

# 方程组对应的文法,每个方程用,或者;做分隔

def p_equations(p):

    """equations : equation ',' equations

                 | equation ';' equations

                 | equation"""

    if len(p) == 2:

        p[0] = [p[1]]

    else:

        p[0] = [p[1]] + p[3]

 

# 单个方程对应的文法

def p_equation(p):

    """equation : eq_left '=' eq_right"""

    p[0] = (p[1], p[3])

 

# 方程等式左边对应的文法

def p_eq_left(p):

    """eq_left : var_unit eq_left

               |"""

    if len(p) == 1:

        p[0] = []

    else:

        p[0] = [p[1]] + p[2]

 

# 六种文法对应例子: x, 5x, +x, -x, +4x, -4y

# 归约的形式是一个元组,例: (5, 'x')

def p_var_unit(p):

    """var_unit : VARIABLE

                | CONSTANT VARIABLE

                | '+' VARIABLE

                | '-' VARIABLE

                | '+' CONSTANT VARIABLE

                | '-' CONSTANT VARIABLE"""

    len_p = len(p)

    if len_p == 2:

        p[0] = (1.0, p[1])

    elif len_p == 3:

        if p[1] == '+':

            p[0] = (1.0, p[2])

        elif p[1] == '-':

            p[0] = (-1.0, p[2])

        else:

            p[0] = (p[1], p[2])

    else:

        if p[1] == '+':

            p[0] = (p[2], p[3])

        else:

            p[0] = (-p[2], p[3])

 

# 方程等式右边对应的常数,对应的例子:1.2, +1.2, -1.2

def p_eq_right(p):

    """eq_right : CONSTANT

                | '+' CONSTANT

                | '-' CONSTANT"""

    if len(p) == 3:

        if p[1] == '-':

            p[0] = -p[2]

        else:

            p[0] = p[2]

    else:

        p[0] = p[1]

 

if __name__ == '__main__':

    data = '''

    -x + 2.4y + z = 0; //this is a comment

    9y - z + 7.2x = -1;

    y - z + x = 8

    '''

 

    lexer = lex.lex()

    parser = yacc.yacc(debug=True)

    lexer.lineno = 1

    s = parser.parse(data)

    print s


直接运行文件即可,得到的输出如下,之后就可以根据线性代数的方法求解各个变量的值


([[-1.0, 2.4, 1.0, -0.0], [7.2, 9.0, -1.0, 1.0], [1.0, 1.0, -1.0, -8.0]], ['x', 'y', 'z', 1])


总结


依托于python简洁的语法,ply为我们提供了一个强大的语法分析工具,更复杂的例子可以参考https://github.com/LiuRoy/proto_parser,这是我用ply实现的一个简单的protobuf解析器,用于减少频繁的中间文件生成。有这种神器,一颗赛艇!


觉得本文对你有帮助?请分享给更多人

关注「Python开发者」

看更多技术干货

专栏作者简介点击 → 加入专栏作者 )


下弦月:life is short, I don't know how to choose.

打赏支持作者写出更多好文章,谢谢