专栏名称: R语言与水文生态环境
本账号依托水文生态研究中心,分享水文地质、环境科学相关文献情报;科普环境、地学知识!
51好读  ›  专栏  ›  R语言与水文生态环境

【文献情报】|Journal of Hydrology|地下水中稀土元素的水文地球化学和健康影响:综述!

R语言与水文生态环境  · 公众号  ·  · 2025-01-22 00:02

正文

点击蓝色字体 关注我们

(一)基本信息

  • 期刊: Journal of Hydrology

  • 中科院分区: 1区 地球科学

  • 影响因子(IF):5.9

(二)作者信息
  • 第一作者:Huaming Guo

  • 通讯作者:Haiyan Liu

  • 第一作者单位:State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China

  • 原位连接:https://doi.org/10.1016/j.jhydrol.2025.132704

(三)文章亮点
  • (1)地下水 REE 来自含水层基质和人为活动;

  • (2)地球化学过程改变了 REE 模式和特征;
  • (3)揭示自然界中人为 REE 的行为有助于追踪地球化学过程;
  • (4)切需要 REE 浓度的饮用水指南。
(四)摘要
由于人为活动,稀土元素 (REE) 越来越多地在地下水中积累,但对其命运、水文地球化学行为和健康影响仍然知之甚少。我们系统地回顾了过去几十年来有关地下水中 REE 的来源、地球化学过程、潜在示踪剂和健康影响的科学文献。地下水中的 REE 主要来自基岩,偶尔也来自人为活动。地球化学过程,包括氧化还原过程、络合、吸附和解吸,会改变地下水中的 REE 特征。氧化还原条件会改变 Ce 的氧化还原状态并导致异常,这可以反映地下水系统中的氧化还原过程。我们系统地得出结论,REE 浓度和模式可用于描绘地下水中地源氧化还原敏感元素(如砷和铀)的来源和地球化学过程。来自废水、肥料、采矿和固体废物的人为 REE 可以引入地下水系统,从而扰乱自然 REE 特征。我们梳理了区分地质 REE 特征和人为 REE 干扰可能有利于划定地下水污染和追踪相关的地球化学过程。长期饮用低剂量含 REE 的饮用水会对人类健康造成多种重大损害。需要对 REE 摄入途径、潜在的缓解措施和 REE 浓度的饮用水指南进行新的调查,以尽量减少其对健康的影响。需要进一步的研究来更好地了解地下水中人为 REE 的环境行为和流行病学影响。
(五)图文赏析

Fig. 1. A schematic diagram illustrating the overall geochemical processes controlling REEs in groundwater.

Fig. 2. A simplified diagram showing redox processes, complexation, and desorption control on REE in groundwater. The subscript Nor means normalization of REE using standard reference. REE complexation with anions, which typically generates HREE-enriched pattern due to REE-carbonate complexes ( Luo and Byrne, 2004 ); Oxidative scavenging, where Ce and LREE are preferentially adsorbed over HREE leading to negative Ce anomaly and HREE enrichment in groundwater ( De Carlo et al., 1998; Bau and Koschinsky, 2009 ); Preferential desorption of Ce(IV) over Ce(III) from surfaces upon Ce oxidation ( Bau, 1999 ); Microbially-mediated oxidation of Ce(III) to Ce(IV) ( Moffett, 1990 ); Desorption of REEs from Fe/Mn oxide surfaces along with Ce desorption ( Bau et al., 1998 ); Reduction of Fe(III) to Fe(II) forming Fe-S minerals in the presence of sulfide (Luther III et al., 1992; Roy et al., 2011 ); Reduction of Ce(IV) to Ce(III) ( Tang and Johannesson, 2006 ). REE mobilization, fractionation, and re-distribution in groundwater serve as a powerful tool to reconstruct the effects of redox processes, complexation, adsorption and desorption.

Fig. 3. A diagram illustrating the impact of adsorption onto metal (i.e., Fe, Mn, and Al) oxyhydroxides and organic substances on groundwater REE (Note that property of metal and organic colloids or particles changes from upstream to downstream. This will result in different REE concentrations and normalized patterns for groundwater and colloids or particles. Upstream, the oxidative groundwater favors preferential scavenging of LREEs and Ce with metal oxyhydroxides, and thus LREEs depletion and negative Ce anomaly occur in the groundwater herein. Downstream, the remaining REEs sorbed onto metal colloids or particles are depleted in LREEs, and negative Ce anomaly decreases. Under the conditions of high particle load downstream, REEs would shift from colloidal facies to particle facies).

Fig. 4. A diagram illustrating the impact of chemical weathering on groundwater REE (The evolution trend of REE patterns was adopted from Li et al. (2020) . The HREE-enriched patterns observed in groundwater of upper slope primarily result from preferential dissolution of HREE-bearing minerals during weathering under mildly acidic conditions, while carbonate complexes and their preferential sorption onto mineral surfaces play a critical role in formation of HREE-enriched patterns in groundwater of lower slope. During migration, groundwater pH value increases, and carbonate concentration increases due to mixing with the alkaline and carbonate-rich groundwater. This will facilitate the transport of HREE in groundwater).

Fig. 5. A simplified diagram showing the REE patterns and Gd anomaly in tracing migration of AMD and WWTP effluent in groundwater systems (Note that the presence of anthropogenic Gd is shown by positive Gd anomaly in normalized REE patterns (REE NOR ). The appreciable positive Gd in tap water signals that groundwater should be monitored with continuous efforts, especially in the areas where groundwater is artificially recharged by surface water, and is used for drinking water supply).

Fig. 6. Distribution of REE risk expressed as hazard quotient (HQ) in groundwater and tap water (REE data used for risk calculation were taken from Krohn et al. (2024), Knappe et al. (2005), Johannesson et al. (2017), Wysocka et al. (2023) , and Kulaksız and Bau (2011a). The normalized REE pattern in panel (a) is shown with average REE concentrations, and risk distribution in panel (b) is displayed with average values as well. The specific method for REE risk calculation has been published in one of our recent studies ( Liu et al., 2024 )).

免责声明:本文遵循微信公众平台各项保护原创的措施。推文可能未提前与原作者取得联系,或无法查证真实原作者,若涉及版权问题,请原作者留言联系我们。经核实后,我们会及时删除或者注明原作者及出处。本公众号原创文章,欢迎转载,转载时请注明出处。推文数据来源于网络,本文仅用于学术分享与传播。
(六)往期目录
  • (1)学习资源







请到「今天看啥」查看全文