Power analyses & sample size
检验检验力(Statistical power)指的是假设存在效应的情况下,一个 test 有多大可能探测出这种效应。
统计检验力不仅是一个统计学的概念,在实验设计中也至关重要。自2012年以来,对心理学中“可重复性危机”的分析表明,统计检验力不够是许多研究的共同问题。因此作为对可重复性危机的对策,整个心理学界越来越重视重视研究的统计检验力了。
在WE LOST 的第五期(录屏见:
OSF | WE LOST #5:Biased Power Analysis.mp4 https://osf.io/m9ng5/
)中,我们讨论了Albers, C., & Lakens, D. (2018) Biased Power Analysis 一文,学习了为什么基于小样本的pilot study无法为实验提供可靠的样本量计划。
受到这次讨论的启发,我们决定将WE LOST与统计检验力分析和样本量规划相关的研究集中起来进行讨论,这就是我们WE LOST中的第一个专题。本次专题的主题如下:
2019.02.17
张雅文
Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias.
Journal of experimental social psychology
,
74
, 187-195.
(
已经报告
)
2019.03.03
贾彬彬
Cumming, G. (2014). The new statistics: Why and how.
Psychological science
,
25
(1), 7-29.
2019.03.10
姜啸威
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience.
Nature Reviews Neuroscience
,
14
(5), 365.
2019.03.17
陈力天
Schweizer, G., & Furley, P. (2016). Reproducible research in sport and exercise psychology: The role of sample sizes.
Psychology of Sport and Exercise
,
23
, 114-122.
2019.03.24
夏涛
Nuzzo, R. (2014). Scientific method: statistical errors.
Nature News
,
506
(7487), 150.
2019.03.31
哈斯巴根
Schönbrodt, F., Gollwitzer, M., & Abele-Brehm, A. (2017). Data management in psychological science: Specification of the DFG guidelines.
2019.04.07
胡传鹏
Stefan, A. M., Gronau, Q. F., Schönbrodt, F. D., & Wagenmakers, E. J. (2019). A tutorial on Bayes Factor Design Analysis using an informed prior.
Behavior research methods
, 1-17.
更重要的是,我们招募报告人,来对如下文献进行分享:
Westfall, J. (2016). PANGEA: Power analysis for general anova designs. Retrieved from http://jakewestfall.org/publications/pangea.pdf
Perugini, M., Gallucci, M., & Costantini, G. (2018). A Practical Primer To Power Analysis for Simple Experimental Designs.
International Review of Social Psychology
,
31
(1).
【报名方式】