点击下方
卡片
,关注“
自动驾驶之心
”公众号
>>
点击进入→
自动驾驶之心
『
数据闭环
』
技术交流群
本文只做学术分享,如有侵权,联系删文
老牌Tier1智驾18个月落地,探究神速背后的“冰山之下”。
当下,以端到端技术加持的高阶智驾进入落地竞速阶段。
而在这之间,除了算法、体验和安全性等显性因素之外,更为关键的是,那些隐藏在“冰山之下”的能力。
换言之,云基础设施、工具链、数据合规闭环等,这些支撑性模块才是决定自动驾驶技术迭代速度的关键因素。
目前,自动驾驶领域所面临诸多挑战,如数据合规性、大规模数据的存储和运算,以及算力瓶颈等……
这些对于构建自动驾驶技术基础至关重要的问题,目前在公众认知中的普及程度仍然有限。
可以说,在自动驾驶行业的靓丽冰山之下,还诸多底层能力模块支持着上层的算法迭代。构建高效、合规的自动驾驶
数据闭环
,成为核心的“增长飞轮”。
据统计,我国L2级自动驾驶新车的渗透率在2023年已超过50%,这一数据表明自动驾驶技术已步入大规模商业化应用阶段。
与此同时,目前新车的高阶智驾功能也在一定程度上成为了新车选购的重要参考依据。
如何快速的补齐这一方面的能力成为了当下车企和Tier1面前的痛点。
一方面,训练数据作为自动驾驶技术的核心,其质量和数量直接决定了自动驾驶系统的性能。
在这其中,海量数据的采集、存储、处理和分析是算法迭代的基础。
而数据合规则是自动驾驶的“保险”,确保数据安全合规,避免数据泄露和滥用,是技术落地的重要前提。
此外,自动驾驶技术正经历从“轻图”向“无图”的演变,这标志着自动驾驶对地图的依赖程度正在降低。
然而,地图数据仍然在辅助驾驶体验和功能落地中发挥着重要作用。特别是在一些复杂路段,仍然需要地图来增加
安全冗余
。如何以低成本,更轻、更快、更灵活的利用地图数据,也是行业关注的重要话题。
▲智驾感知示意图
目前主流的智驾玩家中普遍认为,云基础设施、工具链和数据合规体系是构建数据闭环能力的核心要素。
云基础设施提供强大的计算、存储和网络能力,工具链实现数据全流程的自动化处理,数据合规体系保障数据安全合规。
通过建立数据采集网络、构建数据平台、开发工具链和建立数据合规体系,企业可以构建高效、合规的自动驾驶数据闭环,推动自动驾驶技术的快速发展,最终实现安全、可靠、的自动驾驶落地。
为此,各大车企纷纷投入巨资进行数据采集和标注,并通过不断提升训练量来提升自动驾驶系统的质量。
而在这其中,重组算力,深入地图数据的采集这样重复造轮子无疑是费时费力的,并不具备可持续性。
可以说,随着自动驾驶技术的快速发展,满足数据闭环下的提质增效也成为了新的挑战。