专栏名称: OSC开源社区
OSChina 开源中国 官方微信账号
目录
相关文章推荐
程序员的那些事  ·  清北 DeepSeek 教程"神仙打架",北 ... ·  3 天前  
程序员小灰  ·  Manus,又一国产AI封神了,一码难求! ·  2 天前  
OSC开源社区  ·  Linux内核往事 ·  2 天前  
码农翻身  ·  字节的Trae不像一个IDE,它更像一个人 ·  2 天前  
51好读  ›  专栏  ›  OSC开源社区

PaaS 容器集群优化之路

OSC开源社区  · 公众号  · 程序员  · 2017-05-13 08:29

正文


摘要: 本文探讨了在一个复杂的 PaaS 系统中,如何系统化、科学化的进行全系统的性能优化工作。


性能优化面对的挑战

以下是整个PaaS平台的架构



其中主要包括这些子系统:


- 微服务治理框架 :为应用提供自动注册、发现、治理、隔离、调用分析等一系列分布式/微服务治理能力,屏蔽分布式系统的复杂度。


- 应用调度与资源管理框架 :打通从应用建模、编排部署到资源调度、弹性伸缩、监控自愈的生命周期管理自动化。


- 应用开发流水线框架 :打通从编写代码提交到自动编译打包、持续集成、自动部署上线的一系列CI/CD全流程自动化。


- 云中间件服务 :应用云化所需的数据库、大数据、通信和应用中间件服务;通过服务集成管控可集成传统非云化的中间件能力。


面对一个如此复杂的系统,性能优化工作是一个非常艰巨的挑战,这里有这么一些痛点:


- 源代码及开发组件多,100+ git repo,整体构建超过1天


- 运行架构复杂,全套安装完需要30+VM,200+进程


- 软件栈深,网络平面复杂


- 集群规模大,5k — 10k节点环境搭建非常困难


- 系统操作会经过分布式的多个组件,无法通过单一组件诊断发现系统瓶颈


- 无法追踪上千个处于不同层次的API的时延和吞吐


- 大部分开发人员专注于功能开发,无法意识到自己的代码可能造成性能问题


优化分析

那么,对于这么一个大的、复杂的系统,从方法论的角度来讲,应该怎么去优化呢?基本思路就是做拆分,把一个大的问题分解为多个互相不耦合的维度,进行各个击破。


从大的维度来讲,一个PaaS容器集群,可以分为3个大的子系统。


- 控制子系统 :控制指令的下发和运行(k8s),例如创建pod


- 业务流量子系统 :容器网络(flannel)、负载均衡(ELB/kube-proxy)


- 监控子系统 :监控告警数据的采集(kafka, Hadoop)


这个看起来仅仅是一个架构上的划分,那么如何和具体的业务场景对应起来呢?我们可以考虑如下一个场景,在PaaS平台上大批量的部署应用。


看看在部署应用的过程中,会对各个子系统产生什么压力。


- 应用软件包大小:400M


- 应用模板大小:10M


- 1000个节点,每个节点一个POD,一个实例


- 10种类型的软件包,依赖长度为3,10GB 网络


- 调度及资源管理 3VM


这是一个典型的部署应用的一些规格,那么对于这样的一个输入,我们可以按照架构把压力分解到每个子系统上,这样得出的子系统需要支撑的指标是:


- 控制子系统 : kubernetes调度速度 > 50 pods/s,仓库支持300并发下载,>40M/s


- 数据子系统 :overlay容器网络TCP收发性能损耗


- 监控子系统 :在上面这个场景中不涉及,但可以从别的场景大致告警处理能力100条/秒


这里的业务场景:架构分析:子系统指标,这三者是m:1:n的,也就是说在不同场景下对不同的组件的性能要求不同,最后每个组件需要取自己指标的最大值。


指标决定了后续怎么进行实验测试,而测试是要花较大时间成本的,所以在指标的选取上要求少求精,尽量力图用2-3个指标衡量子系统。


优化测试 & 工具

上面讲的还是偏纸上的推演和分析,接下来进入实战阶段



对于服务器后端的程序来讲,推荐使用Promtheus这个工具来做指标的定义和采集。


Promtheus的基本工作原理是:后端程序引入Promtheus的SDK,自定义所有需要的测量的指标,然后开启一个http的页面,定期刷新数据。


Promtheus服务器会定期抓取这个页面上的数据,并存在内部的时间序列数据库内。


这种抓而非推的方式减少了对被测试程序的压力,避免了被测程序要频繁往外发送大量数据,导致自身性能反而变差而导致测量不准确。


Promtheus支持这几种数据类型:


- 计数(对应收集器初始化方法NewCounter、NewCounterFunc、NewCounterVec,单一数值,数值一直递增,适合请求数量统计等)


- 测量(对应收集器初始化方法NewGauge、NewGaugeFunc、NewGaugeVec,单一数值,数值增减变动,适合CPU、Mem等的统计)


- 直方图测量(对应收集器初始化方法NewHistogram、NewHistogramVec,比较适合时长等的统计)


- 概要测量(对应收集器初始化方法NewSummary、NewSummaryVec,比较适合请求时延等的统计)


我们可以看看在kubernetes项目里面是怎么用的:


var (

// TODO(a-robinson): Add unit tests for the handling of these metrics once

// the upstream library supports it.

requestCounter = prometheus.NewCounterVec(

prometheus.CounterOpts{

Name: "apiserver_request_count",

Help: "Counter of apiserver requests broken out for each verb, API resource, client, and HTTP response contentType and code.",

},

[]string{"verb", "resource", "client", "contentType", "code"},

)

requestLatencies = prometheus.NewHistogramVec(

prometheus.HistogramOpts{

Name: "apiserver_request_latencies",

Help: "Response latency distribution in microseconds for each verb, resource and client.",

// Use buckets ranging from 125 ms to 8 seconds.

Buckets: prometheus.ExponentialBuckets(125000, 2.0, 7),

},

[]string{"verb", "resource"},

)

requestLatenciesSummary = prometheus.NewSummaryVec(

prometheus.SummaryOpts{

Name: "apiserver_request_latencies_summary",

Help: "Response latency summary in microseconds for each verb and resource.",

// Make the sliding window of 1h.

MaxAge: time.Hour,

},

[]string{"verb", "resource"},

)

)



在这里,一个http请求被分为verb, resource, client, contentType, code这五个维度,那么后面在PromDash上就能图形化的画出这些请求的数量。


从而分析哪种类型的请求是最多,对系统造成最大压力的,如图



除了Promtheus,还可以引入其他的测量手段,对系统进行分析。



在kubernetes调度过程中,各个状态Pod的数量,看哪一步是最卡的



go pprof分析,哪些函数是最耗CPU的


优化开发

发现了瓶颈之后,下一步就是解决瓶颈,和具体业务逻辑有关,本文在这里就不做过多的阐释。


需要对相关代码非常熟悉,在不改变功能的情况下增强性能,基本思路为并发/缓存/去除无用步骤等。


优化成果

这是我们在kubernetes项目上控制面优化的成果



这里仅仅显示了控制子系统的指标,其他子系统还没有支持那么大的集群,尤其在网络方面,不同用户的网络架构差别很大。所以数据仅供参考。


优化的优化

在上面的优化过程当中,基本上工程师要做几百次优化的测试和开发。这里会产生一个循环:


- 测试寻找瓶颈点


- 修改代码突破这个瓶颈点


- 重新测试验证这段代码是否有效,是否需要改优化思路


这就是一个完整的优化的迭代过程,在这个过程当中,大部分时间被浪费在构建代码、搭建环境、输出报告上。


开发人员真正思考和写代码的时间比较短。为了解决这个问题,就需要做很多自动化的工作。在kubernetes优化的过程中,有这么几项方法可以节省时间:



- kubemark模拟器 :社区项目,使用容器模拟虚拟机,在测试中模拟比达到1:20,也就是一台虚拟机可以模拟20台虚拟机对apiserver产生的压力。在测试过程当中,我们使用了500台虚拟机,模拟了10000节点的控制面行为。


- CI集成 :提交PR后自动拉性能优化分支并开始快速构建


- CD集成 :使用I层的快照机制,快速搭建集群并执行测试案例输出测试报告


以上都是在实践过程中总结的一些点,对于不同的项目工程应该有很多点可以做进一步的优化,提升迭代效率。


在搭建完这套系统后,我们发现这个系统可以从源头上预防降低系统性能的代码合入主线。如果一项特性代码造成了性能下降,在CI的过程当中,功能开发者就能收到性能报告,这样开发者就能自助式的去查找自己代码的性能问题所在,减少性能工程师的介入。







请到「今天看啥」查看全文