专栏名称: 好玩的数学
好玩的数学以数学学习为主题,以传播数学文化为己任,以激发学习者学习数学的兴趣为目标,分享有用的数学知识、有趣的数学故事、传奇的数学人物等,为你展现一个有趣、好玩、丰富多彩的数学世界。
目录
相关文章推荐
超级数学建模  ·  当我有两条裙子,刚好男朋友也想试试... ·  昨天  
超级数学建模  ·  3分钟,1000年,看古建惊艳! ·  3 天前  
超级数学建模  ·  真不是我吹!这款百元耳夹太香了! ·  3 天前  
超级数学建模  ·  DeepSeek开源周来了!网友:纯粹的工程 ... ·  4 天前  
超级数学建模  ·  限时领 | ... ·  4 天前  
51好读  ›  专栏  ›  好玩的数学

有名的怪题

好玩的数学  · 公众号  · 数学  · 2018-12-12 19:07

正文


节选自《帮你学数学》,张景中著,中国少年儿童出版社。


有这么一个故事,曾经在一些国际数学家聚会中流传。他们把这个故事里提出的问题,叫做“ 看来几乎无法回答的问题 ”。


现在,我把这个故事写在下边,作一些分析说明。


有一个一元二次方程。它的两个根都是大于1的正整数,而且两根的和不超过40。这个方程写出来是: x²-px+q=0 (纸上p、q处写的是数)。


有人把写有这个方程的纸条从中间撕开,把带有数p的一半给了数学家甲,把带有q的另一半给了外地的数学家乙。



于是,甲知道了两根的和(p),乙知道了两根的积(q)。


过了一会儿,甲打电话告诉乙说:“我断定,你一定不知道我手中的p。”


又过了一会儿,乙回电活说:“可是,我已经知道你的p是多少了。”


又过了一会儿,甲回电话说:“我也知道你的q了。”


请问:这个方程的两个根是什么?


这个问题,怪就怪在没有已知数,好像很难。其实,仔细看明问题,经过一番分析,用算术知识便能解答。


关键在于:甲所说的“你一定不知道我手中的p”意味着什么。


它意味着p一定不能写成两个素数的和。


因为p=a+b,要是a、b都是素数,那么,乙手中拿到的q,就有可能是ab,要是q=ab,q就只有一种分解因子的方法,乙便知道手中的p了。


注意!甲断定,乙一定不知道p。这就是说乙手里拿的q,一定不是两个素数的积。也就是说甲自己拿到的p,不是两个素数的。


这样,乙就可以一个一个地检查,在4到40之中,把不能分成两个素数的和的数,全部找出来。它们是:


11、17、23、27、29、35、37。


现在,乙已经知道甲手中的不外乎是这7个数了。


那么,甲、乙手里是什么数时,乙能准确地说出甲手中的p,同时甲又能准确地说出乙手里的q呢?


先看11。

要是乙手里是18、24或者28,那么,因为

18=2×9=3×6,只有2+9在这7个数之中;

24=3×8=2×12=4×6,只有3+8在这7个数之中;

28=4×7=2×14,只有4+7在这7个数之中;

可见,乙手里拿到18、24或者28,都能断定甲手中是11;可是这时,甲却不能断定乙手里是18,还是24,还是28。

所以,甲手里不是11。


再看23。

130=10×13=5×26=2×65,只有10+13在这7个数之中;

126=14×9=7x18=……只有14+9在这7个数之中。

可见乙手里拿到130或者126,都能断定甲手里是23;可是这时,甲却不能断定乙手里是130,还是126。

所以,甲手里不是23。


同样的道理,甲手里不是27,不是29,不是35,不是37。最后,只剩下一种可能:甲手里拿到了17。


甲手里的p是17,乙手里可能拿到:

30=2×15,42=3×14,60=5×12,66=6×11,

70=7×10,72=8×9,52=4×13。


要是乙拿到30,30=5×6,5+6=11,乙就不能断定甲有到的是11,还是17。

所以,乙拿到的不是30。


同样的道理,乙拿到的不是42,不是60,也不是66、70、72。最后,只剩下一种可能:乙拿到的是52。


52=4×13=2×26。因为2+26=28,不在这7个数之中,所以乙可以断定甲拿到了17。


结果,这个方程的两个根是4和13。


以上解决问题的方法叫做 枚举法 ,又叫做 穷举法 ,就是把各种可能加以分析,从中找出解答。







请到「今天看啥」查看全文