“我们做的是一件很有挑战的事情,需要大量的资金、资源支持。”智谱AI CEO张鹏接受采访时提到,当前的经济形势下,AI的投入又很大,结果跟大家的预期有差距,大家会感受到特别大的压力和焦虑。
的确,资本迫切的回报周期压力之下,融资只是独角兽们拿到大模型船票的第一步,学会赚钱,才是他们的必修课。
告别去年的“百模大战”,今年大模型行业开始走向应用落地,也就是商业化。和去年技术路线之争一样,今年的商业化落地路径依旧是行业激辩的焦点。
比如在今年智源大会上,零一万物创始人李开复表示,“零一万物坚决做To C业务,不做赔钱的To B业务。”
中国工程院院士张亚勤院士则认为,在具身智能阶段,To B的应用可能会比To C更快落地,“现阶段大模型真正赚钱的则在于B端基础设施层面,包括芯片、硬件、服务器等。”
本质上,是大模型商业化之路的B端和C端之争。一方认为B端应用相对明确,覆盖行业广,能快速实现多个场景的应用,C端竞争大,想要跑出一个爆款应用时间成本较高;另一方认为,行业内卷加剧价格战,B端大模型利润被压缩,而C端能更快地看到收益。
这个思路之下,国内初创大模型厂商最初商业化主要分两个阵营,一种是像月之暗面、百川智能、零一万物这样以C端业务为主的公司;另一种是兼顾B端和C端两条腿走路,以智谱AI、MiniMax为代表。
说起C端大模型应用,最广为市场熟知的,莫过于月之暗面的Kimi。2023年10月,Kimi横空出世,凭借出色的长文本能力成为当下的爆款,随后月之暗面又将Kimi的长文本能力提升10倍,并迅速进行产品迭代和优化。
数据显示,2023年12月至2024年2月,Kimi的月活跃用户数分别为50.83万、112.85万和298.46万人。尤其是在2024年2月,用户数几乎是2023年12月的近6倍。
Kimi的火爆有目共睹,但不可否认的是,C端市场虽然距离消费者更近,收益更快,但入局的玩家很多,距离真正的超级应用出现还有很长一段距离,谁都有突围的机会,谁都不能松懈。
当下,大模型在C端市场的营收模式较为单一,除了订阅费之外,其他收费模式目前都在探索之中。比如,Kimi此前推出“给Kimi加油”的付费选项,金额从5.2元到399元不等,类似于“打赏”模式,以此探索新的商业化。
另一边,像智谱AI这类B端业务商业化进展更快的厂商,则将重点放在了大模型生态上。
自智谱AI成立以来,一直将OpenAI作为追赶目标。截至目前,智谱AI已经打造了完整对标OpenAI的模型产品,包括AI提效助手智谱清言、高效率代码模型CodeGeeX、多模态理解模型CogVLM和文生图模型CogView等。
智谱AI CEO张鹏多次强调,与C端市场相比,B端市场的付费意愿更为强烈。这一路径下,智谱AI围绕B端市场做了很多布局。
比如,提出“模型即服务”的理念,通过将大模型封装成开放平台,提供API给开发者和企业调用,按照调用量进行付费;针对中大型企业对数据安全的需求,智谱AI提供云端私有化部署方案,帮助用户在云端开辟专门的模型专区。
无论是哪种路径,初创企业的想法都是赚到钱,但问题也都一样棘手。C端商业化面临用户留存低、获客成本高的难题;B端商业化面临行业价格战,初创公司压力不小。
这时候,B端和C端两条腿走路是一些厂商的思路。
今年8月,月之暗面发布Kimi企业级API,继续发力B端市场。相较于覆盖to C需求的通用模型,企业级模型推理API有着更高等级的数据安全保障和并发速率,用以支持企业内部的复杂工作流和大规模的数据处理需求。
同时,智谱AI也开始探索C端业务的研发和落地。
今年7月,智谱AI发布生成视频模型清影正式上线,生成6秒视频只需要30秒的时间;8月,智谱清言APP上线视频通话功能。
另一家独角兽MiniMax,在产品上也是C端和B端双向布局的策略。面向C端,有角色扮演类AI聊天应用Glow、沉浸式AI内容社区产品“星野”、支持论文写作的“海螺AI”等;面向B端,MoE大语言模型abab 6、abab 6.5相继发布,并计划开放API。
从爆火至今,大模型经历了很多个重要节点,其中最重要的是从参数到应用的演变,大模型跑得快的标准正变成好用和实用。行业的共识在于,通用大模型公司的能力水平再高,最终也要依靠商业化造血。
当下,几乎所有初创大模型厂商的收入规模都远远不足以支撑自己的估值,各大应用又陷入同质化的竞争,如何在花钱的同时学会赚钱,是他们过去及未来探索商业化的核心,毕竟时间不等人。