专栏名称: 计量经济学服务中心
见证计量经济学发展,更懂计量更懂你!
目录
相关文章推荐
广告文案  ·  学到了,羽绒服还能这样卖 ·  昨天  
分众传媒  ·  一周广告回顾 | ... ·  4 天前  
樊登读书  ·  买1送1!低至约0.53元/天!李蕾讲经典双 ... ·  4 天前  
樊登读书  ·  买1送1!低至约0.53元/天!李蕾讲经典双 ... ·  4 天前  
营销案例精选  ·  “2024十大创意新人”征集中 ·  6 天前  
营销案例精选  ·  “2024十大创意新人”征集中 ·  6 天前  
AppSA  ·  Apple ... ·  1 周前  
AppSA  ·  Apple ... ·  1 周前  
51好读  ›  专栏  ›  计量经济学服务中心

DID前沿应用_DID模型时间、空间、混合安慰剂检验新命令didplacebo

计量经济学服务中心  · 公众号  ·  · 2024-05-18 23:50

正文

DID前沿_DID模型时间、空间、混合安慰剂检验新命令didplacebo

1、简介

DID安慰剂检验的Stata新命令didplacebo,可以自动进行DID模型的时间、空间及时空混合安慰剂检验,并提供可视化展示。

didplacebo实现了用于估计差异中的差异(DID)模型的安慰剂检验,其中政策采用可能是同步的或交错的。特别是,didplacebo使用假的治疗时间进行时间安慰剂检验,使用假的处理单位(随机选择)进行空间安慰剂检验,以及使用假的处理单位和时间(都是随机选择)进行混合安慰剂测试。此外,didplacebo为可视化提供了方便的图表。

要执行安慰剂检验,必须指定估计名称estimatename和处理变量名称treatvarname,作为didplacebo命令的输入。didplacebo自动执行estimatename来获取用于DID估计的命令(cmdline)。然后用相同的命令再次估计模型,使用假的处理变量来产生安慰剂效应。Treatvar (treatvarname)指定一个虚拟变量,指示一个单元在特定时期是否被处理。

除了传统的双向固定效应估计(TWFE)之外,要使用异质性稳健估计(例如,Callaway和Sant'Anna, 2021)进行安慰剂检验,可以使用我们的命令xtshuffle, xtrantreat和tofirsttreat。有关详细说明,请参阅Chen, Qi和Yan(2023)。

didplacebo已被确认与官方命令regress、xtreg、areg和xtdidreress以及第三方命令reghdfe兼容。其他命令虽然没有经过专门测试,但也可能与didplacebo兼容。

2、语法格式

didplacebo estimatename , treatvar(treatvarname) [options]

选项含义:

  • Pbotime (numlist)时间安慰剂测试
  • Pbounit空间安慰剂试验
  • Pbomix([1 2 3])混合安慰剂试验
  • Repeat (int)复制的个数
  • Seed (int)随机数所使用的种子
  • frame(framename)存储估计安慰剂的数据框结果
  • Nofigure不显示图表
  • Savegraph(前缀,[asis replace])将生成的所有图形保存到当前路径。

注意事项:

  • 必须使用Xtset panelvar timevar来声明面板数据集,参考[XT] xtset。
  • Estimatename应该是由估计存储保存的估计;参考[R] estimate储存

3、 案例应用

3.1 案例1:标准DID: Cao and Chen:2022

1、导入数据

         use cao_chen.dta, clear

2、进行TWFE模型估计


.          xtset county year
       panel variable:  county (strongly balanced)
        time variable:  year, 1650 to 1911
                delta:  1 unit

.          reghdfe rebel canal_post, absorb(i.county i.year) cluster(county)
(MWFE estimator converged in 2 iterations)

HDFE Linear regression                            Number of obs   =    140,432
Absorbing 2 HDFE groups                           F(   1,    535) =       5.23
Statistics robust to heteroskedasticity           Prob > F        =     0.0226
                                                  R-squared       =     0.0308
                                                  Adj R-squared   =     0.0253
                                                  Within R-sq.    =     0.0002
Number of clusters (county)  =        536         Root MSE        =     0.3848

                               (Std. Err. adjusted for 536 clusters in county)
------------------------------------------------------------------------------
             |               Robust
       rebel |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  canal_post |   .0380143    .016621     2.29   0.023     .0053639    .0706647
       _cons |   .0313251   .0007227    43.35   0.000     .0299054    .0327447
------------------------------------------------------------------------------

Absorbed degrees of freedom:
-----------------------------------------------------+
 Absorbed FE | Categories  - Redundant  = Num. Coefs |
-------------+---------------------------------------|
      county |       536         536           0    *|
        year |       262           0         262     |
-----------------------------------------------------+
* = FE nested within cluster; treated as redundant for DoF computation

.          estimates store did_cao_chen


end of do-file

结论

  • 漕粮海运导致运河县的叛乱显著增加,DID系数为 0.038, 且在 5% 水平上显著

3、时间安慰剂检验

结论:安慰剂效应的 p 值均大于 0.1,95% 区间均包括 0,故认为满足平行趋势


4、空间安慰剂检验

5、混合安慰剂检验

.  didplacebo did_cao_chen, treatvar(canal_post) pbomix(1)

Implementing mixed placebo test for standard DID (version 1) using both fake treatment units
>  and times:
-------------------------------------------------------------------------
   The number of units randomly   |     The range within which fake      
 selected as fake treatment units | treatment times are randomly selected
----------------------------------+--------------------------------------
                73                |             [1650, 1911]             
-------------------------------------------------------------------------
Simulations (500):.........10.........20.........30.........40.........50.........60........
> .70.........80.........90.........100.........110.........120.........130.........140.....
> ....150.........160.........170.........180.........190.........200.........210.........22
> 0.........230.........240.........250.........260.........270.........280.........290.....
> ....300.........310.........320.........330.........340.........350.........360.........37
> 0.........380.........390.........400.........410.........420.........430.........440.....
> ....450.........460.........470.........480.........490.........500
Results of mixed placebo test for standard DID (version 1) using both fake treatment units a
> nd times:
--------------------------------------------------------------
           |             |               P-value             
           | Coefficient |  Two-sided  Left-sided  right-sided
-----------+-------------+------------------------------------
canal_post |    0.038014 |     0.0100      0.9960       0.0040
--------------------------------------------------------------
Note: (1) The two-sided p-value is the frequency that the absolute values of the placebo
      effects are greater than or equal to the absolute value of estimated treatment
      effect.
      (2) The left-sided (right-sided) p-value is the frequency that the placebo effects
      are smaller (greater) than or equal to the estimated treatment effect.

Finished.



处理效应估计值位于安慰剂效应分布的右侧尾部

3.2 案例2:银行管制与收入不平等案例

1、导入数据

use bbb.dta,clear

2、DID模型估计

.       xtset statefip wrkyr
       panel variable:  statefip (strongly balanced)
        time variable:  wrkyr, 1976 to 2006
                delta:  1 unit

.       global cov gsp_pc_growth prop_blacks prop_dropouts prop_female_headed  unemploymentr
> ate

.       xtreg log_gini _intra $cov i.wrkyr, fe r

Fixed-effects (within) regression               Number of obs     =      1,519
Group variable: statefip                        Number of groups  =         49

R-sq:                                           Obs per group:
     within  = 0.3876                                         min =         31
     between = 0.0396                                         avg =       31.0
     overall = 0.2339                                         max =         31

                                                F(36,48)          =      98.01
corr(u_i, Xb)  = -0.2892                        Prob > F          =     0.0000

                                    (Std. Err. adjusted for 49 clusters in statefip)
------------------------------------------------------------------------------------
                   |               Robust
          log_gini |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------------+----------------------------------------------------------------
            _intra |  -.0177239   .0064033    -2.77   0.008    -.0305986   -.0048493
     gsp_pc_growth |  -.0288419   .0412498    -0.70   0.488    -.1117802    .0540965
       prop_blacks |  -.2128497   .1584963    -1.34   0.186    -.5315277    .1058284
     prop_dropouts |   .1641627   .0713148     2.30   0.026     .0207748    .3075507
prop_female_headed |   .0190403    .056497     0.34   0.738    -.0945545    .1326352
  unemploymentrate |   .0063327   .0012649     5.01   0.000     .0037895    .0088759
                   |
             wrkyr |
             1977  |   .0076353   .0068442     1.12   0.270    -.0061259    .0213964
             1978  |   .0630635   .0072286     8.72   0.000     .0485295    .0775976
             1979  |   .0892775   .0090404     9.88   0.000     .0711006    .1074543
             1980  |   .0661498   .0099681     6.64   0.000     .0461077    .0861919
             1981  |   .0805363   .0099324     8.11   0.000     .0605659    .1005067
             1982  |   .1508562   .0123343    12.23   0.000     .1260565    .1756559
             1983  |   .0835548   .0121092     6.90   0.000     .0592076    .1079021
             1984  |   .0920258   .0130212     7.07   0.000      .065845    .1182066
             1985  |   .0901488   .0121423     7.42   0.000     .0657351    .1145626
             1986  |   .0947377   .0127701     7.42   0.000     .0690616    .1204138
             1987  |   .0852106   .0132274     6.44   0.000     .0586152    .1118061
             1988  |   .0803313   .0140429     5.72   0.000     .0520961    .1085664
             1989  |   .0898124   .0152262     5.90   0.000     .0591981    .1204267
             1990  |   .0771691    .015829     4.88   0.000     .0453429    .1089954
             1991  |   .0734357   .0170896     4.30   0.000     .0390747    .1077966
             1992  |   .0781385    .018361     4.26   0.000     .0412212    .1150558
             1993  |   .0873723   .0196049     4.46   0.000      .047954    .1267905
             1994  |   .0905129   .0200469     4.52   0.000     .0502059    .1308199
             1995  |   .1251676   .0205097     6.10   0.000     .0839301    .1664052
             1996  |   .1072482   .0232226     4.62   0.000      .060556    .1539403
             1997  |   .1224012   .0223157     5.48   0.000     .0775325    .1672699
             1998  |   .1099866   .0224811     4.89   0.000     .0647853    .1551878
             1999  |   .1060401   .0243267     4.36   0.000     .0571279    .1549522
             2000  |   .1332583   .0248512     5.36   0.000     .0832915     .183225
             2001  |   .1175197   .0254826     4.61   0.000     .0662835    .1687559
             2002  |   .1116299   .0262021     4.26   0.000     .0589471    .1643127
             2003  |   .1192856   .0273775     4.36   0.000     .0642394    .1743319
             2004  |   .1139813   .0255872     4.45   0.000     .0625348    .1654277
             2005  |   .1348639   .0266757     5.06   0.000     .0812288    .1884991
             2006  |   .1269117   .0277339     4.58   0.000     .0711488    .1826745
                   |
             _cons |  -.9676361   .0266693   -36.28   0.000    -1.021258    -.914014
-------------------+----------------------------------------------------------------
           sigma_u |  .03262543
           sigma_e |  .03651163
               rho |  .44396696   (fraction of variance due to u_i)
------------------------------------------------------------------------------------

.       estimates store did_bbb


end of do-file

3、时间安慰剂检验

4、空间安慰剂检验

双尾检验P值较小,故可拒绝“处理效应为 0”的原假设

5、 混合安慰剂检验

         . didplacebo did_bbb, treatvar(_intra) pbomix(2)
 pbomix(2) 表示以无约束的方式 (version 2) 进行混合安慰剂检验
Implementing unrestricted mixed placebo test for staggered DID (version 2) using both fake t
> reatment units and times:
-------------------------------------------------------------------------
   The number of units randomly   |     The range within which fake      
 selected as fake treatment units | treatment times are randomly selected
----------------------------------+--------------------------------------
                49                |             [1976, 2006]             
-------------------------------------------------------------------------
Simulations (500):.........10.........20.........30.........40.........50.........60........
> .70.........80.........90.........100.........110.........120.........130.........140.....
> ....150.........160.........170.........180.........190.........200.........210.........22
> 0.........230.........240.........250.........260.........270.........280.........290.....
> ....300.........310.........320.........330.........340.........350.........360.........37
> 0.........380.........390.........400.........410.........420.........430.........440.....
> ....450.........460.........470.........480.........490.........500
Results of unrestricted mixed placebo test for staggered DID (version 2) using both fake tre
> atment units and times:
--------------------------------------------------------------
           |             |               P-value             
           | Coefficient |  Two-sided  Left-sided  right-sided
-----------+-------------+------------------------------------
    _intra |   -0.017724 |     0.0000      0.0000       1.0000
--------------------------------------------------------------
Note: (1) The two-sided p-value is the frequency that the absolute values of the placebo
      effects are greater than or equal to the absolute value of estimated treatment
      effect.
      (2) The left-sided (right-sided) p-value is the frequency that the placebo effects
      are smaller (greater) than or equal to the estimated treatment effect.

Finished.


end of do-file



双边 p 值和左边 p 值均为 0.000,故可强烈拒绝“处理效应为 0” 的原假设