实际上,苦杏仁中有一种成分叫做苦杏苷,从20世纪60年代开始,就有医生将它作为癌症的一种替代疗法[14](当然啦,后来的临床试验显示,这只是科学不发达时人们的“一厢情愿”,实际上苦杏仁并不能改善患者的病情,延长生存期[15])。
苦杏苷可以被水解为扁桃腈,扁桃腈化学性质不稳定,可以自发分解产生苯甲醛和氰化物[16],两者都是有毒物质,氰化物更是大家熟知的“剧毒”,1/3颗胶囊大小的氰化钾粉末就足以致死。那么回头来看,是什么让苦杏苷转化成了扁桃腈呢?你们一定猜到了,就是肠道微生物[17]!所以,你以为你吃下去的是治病的药?其实它可能是毒药哦!
从这许多研究中我们可以看出,肠道微生物能够对进入我们体内的化合物进行代谢,改变化学结构,调节它们对我们人体生理机能的影响,而个体化的差异仍然是这个领域研究中的主要挑战。
而这些研究还只是这个领域的“冰山一角”,未来,研究人员还要将肠道微生物对“异物”的代谢与酶、基因等各方面因素联系起来,更加完整、全面地诠释其中的过程和分子机制。了解它们的终极目的就是希望以此来指导我们日常生活中的个性化营养补充、药物毒理和药效的评估,甚至改变制药行业的发展。
通过肠道微生物与物质的相互作用来指导饮食、预测个人的疾病风险和药物是否有效,以及靶向肠道微生物开发药物
参考文献:
[1] Koppel N, Rekdal V M, Balskus E P. Chemical transformation of xenobiotics by the human gut microbiota[J]. Science, 2017, 356(6344): eaag2770.
[2] X. He, M. L. Marco, C. M. Slupsky, Emerging aspects of food
and nutrition on gut microbiota. J. Agric. Food Chem. 61,
9559–9574 (2013).
[3] I. A. Macdonald, V. D. Bokkenheuser, J. Winter,
A. M. McLernon, E. H. Mosbach, Degradation of steroids in
the human gut. J. Lipid Res. 24, 675–700 (1983).
[4] C. Humblot et al., b-glucuronidase in human intestinal
microbiota is necessary for the colonic genotoxicity of the
food-borne carcinogen 2-amino-3-methylimidazo[4,5-f]
quinoline in rats. Carcinogenesis 28, 2419–2425 (2007).
[5] J. R. Ingelfinger, Melamine and the global implications of food
contamination. N. Engl. J. Med. 359, 2745–2748 (2008)
[6] X. Zheng et al., Melamine-induced renal toxicity is
mediated by the gut microbiota. Sci. Transl. Med. 5,
172ra22 (2013)
[7] H. Wang, C. Geng, J. Li, A. Hu, C. P. Yu, Characterization of a
novel melamine-degrading bacterium isolated from a
melamine-manufacturing factory in China. Appl. Microbiol.
Biotechnol. 98, 3287–3293 (2014)
[8] I. R. Rowland, M. J. Davies, P. Grasso, Metabolism of
methylmercuric chloride by the gastro-intestinal flora of the
rat. Xenobiotica 8, 37–43 (1978).
[9] C. A. Liebert, J. Wireman, T. Smith, A. O. Summers,
Phylogeny of mercury resistance (mer) operons of gramnegative
bacteria isolated from the fecal flora of primates.
Appl. Environ. Microbiol. 63, 1066–1076 (1997).
[10] I. R. Rowland, M. J. Davies, J. G. Evans, The effect of the
gastrointestinal flora on tissue content of mercury and
organomercurial neurotoxicity in rats given methylmercuric
chloride. Dev. Toxicol. Environ. Sci. 8, 79–82 (1980).
[11] T. Sousa et al., The gastrointestinal microbiota as a site for
the biotransformation of drugs. Int. J. Pharm. 363, 1–25
(2008).
[12] P. Spanogiannopoulos, E. N. Bess, R. N. Carmody,
P. J. Turnbaugh, The microbial pharmacists within us: A
metagenomic view of xenobiotic metabolism. Nat. Rev.
Microbiol. 14, 273–287 (2016)
[13] https://www.nature.com/articles/n-12342922
[14] A. S. Relman, Closing the books on laetrile. N. Engl. J. Med.
306, 236 (1982).
[15] C. G. Moertel et al., A clinical trial of amygdalin (laetrile) in
the treatment of human cancer. N. Engl. J. Med. 306,
201–206 (1982).
[16] G. J. Strugala, A. G. Rauws, R. Elbers, Intestinal first pass
metabolism of amygdalin in the rat in vitro. Biochem.
Pharmacol. 35, 2123–2128 (1986).
[17] J. H. Carter, M. A. McLafferty, P. Goldman, Role of the
gastrointestinal microflora in amygdalin (laetrile)-induced
cyanide toxicity. Biochem. Pharmacol. 29, 301–304 (1980).