“AI 开发者”即日起全新升级为“
AI 源创评论
”,在延续开发者、开源、赛事报道的基础上,增加技术人物栏目“AI 源创 100”、企业开源&技术实力数据库“AI 源创因子”、开发者线下峰会“AI 源创会”,为开发者、企业带来更全面、深入的信息、技术服务。
“深度学习是旷视的核心竞争力,也是支撑人工智能革命的关键。”
文 | 张梦华
开源越来越被证明为大势所向。近日,国内计算机视觉企业旷视传出,最快将在 3 月底开源其基于计算平台 Brain++ 的深度学习框架 MegEngine 。届时,复工、开学的企业、学生开发者们也将获得更多选择。
旷视CEO 印奇曾公开表示:“深度学习是旷视的核心竞争力,也是支撑人工智能革命的关键。”其在深度学习中的重要驱动便是 Brain++ 。
2019 年的世界互联网大会上,旷视在入选“国家新一代图像感知人工智能开放创新平台”的同时,发布了端到端的人工智能算法平台 Brain++,后者集成了数据管理、自动化算法研发和算力调度能力,其架构主要包括三部分:作为主体的深度学习算法开发框架 MegEngine ,提供算力支持的 MegCompute,提供数据支持的 MegData 。
今年已经成立近 9 个年头的旷视一直聚焦计算机视觉,因此,和目前通用的深度学习框架相比,MegEngine 更垂直于计算机视觉应用,加上近几年公司在物联网产业不断提速的商业落地,从众多业务场景中获取的数据能力也给予了 MegEngine 更扎实的应用能力。而开源也意味着,作为视觉领域的头部级公司,旷视已经在建设自己的开发者生态上做足了准备。
2012 年后,深度学习的发展带动人工智能进入拐点,前者拥有高于传统机器学习十倍、百倍的神经网络参数,在人工智能最先落地的语音识别、图像识别领域,深度学习都是不可或缺的重要工具。商业落地中的数据反哺,也带动了算力、框架上的不断升级。开发者口中通用的深度学习开源框架基本不出这几种:TensorFlow、 PyTorch、Caffe、CNTK、ONNX 等,这背后又分别站着谷歌、Facebook、微软等巨头。
在国内,业内的共识近几年不断被强化,即人工智能给了中国企业、产业弯道超车的机会,但如果在人工智能发展中重要的深度学习中一直处于被动,前者的概率也将被大大压缩。
而除去开发工具的语言问题,安全性、适用性等需求也在倒逼中国企业在深度学习框架上建立自己的领地,国内头部企业已在此做出不少投入:
比如2016 年 8 月底,百度在宣布“All in AI ”的前一年,开源了自研深度学习平台 PaddlePaddle;2018 年 10 月,华为发布了自研深度学习框架 MindSpore ,虽然没有官宣,但关于其开源的消息已经出现不少雨点。
有头部公司的示范效应,起家于AI 的旷视,相比大厂在AI 人才、数据、算法上有更深的积淀,要在开源上出一份力也不足为奇。鉴于开源在企业人才贡献、代码维护、企业文化、技术影响力等方面的正面效应,势必也将有越来越多的互联网和科技企业加入中国开源生态的建设中来。
历经近6年的打磨,MegEngine 的框架一直紧跟旷视的应用场景调整升级,尤其针对国内需求,相比 TensorFlow、PyTorch 适用性更加突出。
整体上,Brain++ 可针对视觉任务定制化优化,更好满足大量图像及视频训练,完成图像分类、物体检测、物体场景分割、影像分析等复杂的视觉任务。
值得一提的是,作为 Brain++ 最为核心的引擎框架,MegEngine 配备了 AutoML 技术,将深度神经网络设计、参数调整及设备适配等过程自动化,提高开发效率,同时可智能调度平台硬件基础设施的计算能力,支持数百名研究人员同时在数万个 GPU 芯片上执行从数百到数千个训练任务。
旷视从 2014 年开始,内部成立了“Engine”小组自研深度学习框架,经过5年多的打磨和实践,MegEngine 已经逐渐成为支撑其算法研究开发的底层平台,并在旷视实现全员使用。近几年,旷视的计算机视觉技术在智慧城市、智慧物流、智慧零售中的落地逐渐加快,其算力及深度学习框架也在海量数据的补给中更加茁壮。