▲
作者:Joseph Smolsky, Kyle G. Leach, Ryan Abells, Pedro Amaro, Adrien Andoche, Keith Borbridge, Connor Bray, Robin Cantor, David Diercks, Spencer Fretwell, Stephan Friedrich, Abigail Gillespie, Mauro Guerra, Ad Hall, Cameron N. Harris, Jackson T. Harris, Leendert M. Hayen, Paul-Antoine Hervieux, Calvin Hinkle, Geon-Bo Kim, Inwook Kim, Amii Lamm, Annika Lennarz, Vincenzo Lordi, William K. Warburton
▲ 链接:
https://www.nature.com/articles/s41586-024-08479-6
▲ 摘要:
尽管中微子在宇宙中相对丰富,但却是自然界中最不为人所知的基本粒子。事实上,在实验相关源中发射的中微子的量子特性在理论上是有争议的,并且中微子波包的空间范围仅受反应堆中微子振荡数据的松散约束,其传播范围为13个数量级。
在这里,研究者提出了一种方法,即通过精确测量铍-7放射性衰变中释放的反冲子核的能量宽度,来直接获得相关量。衰变过程的最终状态包含一个反冲的锂-7核,它在产生时与一个电子中微子纠缠在一起。锂-7能谱是通过直接将铍-7放射性同位素嵌入高分辨率超导隧道结(作为低温传感器操作)来高精度测量的。
在这种方法下,研究者设定了6.2 pm反冲子的海森堡空间不确定性的下限,这意味着最终状态系统的局域尺度比原子核本身大一千倍以上。从这个测量中,中微子波包的空间范围的直接下限首席被提取出来。这些结果可能会在几个领域产生影响,包括对中微子性质的理论理解,弱核衰变中的局域化性质以及中微子物理数据的解释。
▲ Abstract:
Despite their high relative abundance in our Universe, neutrinos are the least understood fundamental particles of nature. In fact, the quantum properties of neutrinos emitted in experimentally relevant sources are theoretically contested and the spatial extent of the neutrino wavepacket is only loosely constrained by reactor neutrino oscillation data with a spread of 13 orders of magnitude.
Here we present a method to directly access this quantity by precisely measuring the energy width of the recoil daughter nucleus emitted in the radioactive decay of beryllium-7. The final state in the decay process contains a recoiling lithium-7 nucleus, which is entangled with an electron neutrino at creation. The lithium-7 energy spectrum is measured to high precision by directly embedding beryllium-7 radioisotopes into a high-resolution superconducting tunnel junction that is operated as a cryogenic sensor.
Under this approach, we set a lower limit on the Heisenberg spatial uncertainty of the recoil daughter of 6.2 pm, which implies that the final-state system is localized at a scale more than a thousand times larger than the nucleus itself. From this measurement, the first, to our knowledge, direct lower limit on the spatial extent of a neutrino wavepacket is extracted. These results may have implications in several areas including the theoretical understanding of neutrino properties, the nature of localization in weak nuclear decays and the interpretation of neutrino physics data.