专栏名称: 计算机视觉研究院
主要由来自于大学的研究生组成的团队,本平台从事机器学习与深度学习领域,主要在人脸检测与识别,多目标检测研究方向。本团队想通过计算机视觉战队平台打造属于自己的品牌,让更多相关领域的人了解本团队,结识更多相关领域的朋友,一起来学习,共同进步!
目录
相关文章推荐
环球物理  ·  【聚集高考】重磅!2025全国高考时间刚刚定了! ·  20 小时前  
环球物理  ·  【春晚考点】2025春晚15个热门考点汇总, ... ·  2 天前  
51好读  ›  专栏  ›  计算机视觉研究院

最近几篇较好论文实现代码(附源代码下载)

计算机视觉研究院  · 公众号  ·  · 2024-12-05 10:00

正文

关注并星标

从此不迷路

计算机视觉研究院


公众号ID ComputerVisionGzq

学习群 扫码在主页获取加入方式

计算机视觉研究院专栏

这个是” 计算机视觉研究院 “新推出的模块,后期我们会陆续为大家带来最 新文章及技术的代码实现分享



  • 《Towards Layer-wise Image Vectorization》

GitHub: github.com/ma-xu/LIVE

Installation

We suggest users to use the conda for creating new python environment.

Requirement: 5.0 10.0.

git clone [email protected]:ma-xu/LIVE.gitcd LIVEconda create -n live python=3.7conda activate liveconda install -y pytorch torchvision -c pytorchconda install -y numpy scikit-imageconda install -y -c anaconda cmakeconda install -y -c conda-forge ffmpegpip install svgwrite svgpathtools cssutils numba torch-tools scikit-fmm easydict visdompip install opencv-python==4.5.4.60  # please install this version to avoid segmentation fault.cd DiffVGgit submodule update --init --recursivepython setup.py installcd ..

Run Experiments

conda activate livecd LIVE# Please modify the paramters accordingly.python main.py --config  --experiment  --signature  --target  --log_dir # Here is an simple example:python main.py --config config/base.yaml --experiment experiment_5x1 --signature smile --target figures/smile.png --log_dir log/


  • 《Multimodal Token Fusion for Vision Transformers》
GitHub: github.com/yikaiw/TokenFusion


  • 《PointAugmenting: Cross-Modal Augmentation for 3D Object  Detection》
GitHub: github.com/VISION-SJTU/PointAugmenting


  • 《Fantastic questions and where to find them: FairytaleQA -- An authentic dataset for narrative comprehension.》

GitHub: github.com/uci-soe/FairytaleQAData


  • 《LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks》
GitHub: github.com/agoodge/LUNAR
Firstly, extract data.zip
To replicate the results on the HRSS dataset with neighbour count k = 100 and "Mixed" negative sampling scheme
  • Extract saved_models.zip
  • Run:
python3 main.py --dataset HRSS --samples MIXED --k 100

To train a new model:

python3 main.py --dataset HRSS --samples MIXED --k 100 --train_new_model

  • 《Pseudo-Label Transfer from Frame-Level to Note-Level in a Teacher-Student Framework for Singing Transcription from Polyphonic Music》
GitHub: github.com/keums/icassp2022-vocal-transcription


  • 《Robust Disentangled Variational Speech Representation Learning for Zero-shot Voice Conversion》
GitHub: github.com/jlian2/Robust-Voice-Style-Transfer
Demo: https://jlian2.github.io/Robust-Voice-Style-Transfer/


  • 《HandoverSim: A Simulation Framework and Benchmark for Human-to-Robot Object Handovers》

GitHub: github.com/NVlabs/handover-sim

2022-06-03 16:13:46: Running evaluation for results/2022-02-28_08-57-34_yang-icra2021_s0_test2022-06-03 16:13:47: Evaluation results:|  success rate   |    mean accum time (s)    |                    failure (%)                     ||      (%)        |  exec  |  plan  |  total  |  hand contact   |   object drop   |    timeout     ||:---------------:|:------:|:------:|:-------:|:---------------:|:---------------:|:--------------:|| 64.58 ( 93/144) | 4.864  | 0.036  |  4.900  | 17.36 ( 25/144) | 11.81 ( 17/144) | 6.25 (  9/144) |2022-06-03 16:13:47: Printing scene ids2022-06-03 16:13:47: Success (93 scenes):---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  0    1    2    3    4    5    6    7    8    9   10   12   13   15   16   17   18   19   21   22 23   25   26   27   28   30   33   34   35   36   37   38   42   43   46   49   50   53   54   56 59   60   62   63   64   66   68   69   70   71   72   77   81   83   85




    
   87   89   91   92   93 94   95   96   98  103  106  107  108  109  110  111  112  113  114  115  116  117  120  121  123125  126  127  128  130  131  132  133  137  138  139  141  143---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---2022-06-03 16:13:47: Failure - hand contact (25 scenes):---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 11   14   20   29   39   40   41   44   45   47   51   55   57   58   65   67   74   80   82   88102  105  118  124  136---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---2022-06-03 16:13:47: Failure - object drop (17 scenes):---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 24   31   32   52   61   78   79   84   86   97  101  104  119  122  134  140  142---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---2022-06-03 16:13:47: Failure - timeout (9 scenes):---  ---  ---  ---  ---  ---  ---  ---  --- 48   73   75   76   90   99  100  129  135---  ---  ---  ---  ---  ---  ---  ---  ---2022-06-03 16:13:47: Evaluation complete.


  • 《CDLM: Cross-Document Language Modeling》

GitHub: github.com/aviclu/CDLM

You can either pretrain by yourself or use the pretrained CDLM model weights and tokenizer files, which are available on HuggingFace.

Then, use:

from transformers import AutoTokenizer, AutoModel# load model and tokenizertokenizer = AutoTokenizer.from_pretrained('biu-nlp/cdlm')model = AutoModel.from_pretrained('biu-nlp/cdlm')


  • 《Continual Learning for Task-Oriented Dialogue Systems》

GitHub: github.com/andreamad8/ToDCL


  • 《Torsional Diffusion for Molecular Conformer Generation》

GitHub: github.com/gcorso/torsional-diffusion


  • 《MMChat: Multi-Modal Chat Dataset on Social Media》

GitHub: github.com/silverriver/MMChat


  • 《Can CNNs Be More Robust Than Transformers?》

GitHub: github.com/UCSC-VLAA/RobustCNN


  • 《Revealing Single Frame Bias for Video-and-Language Learning》

GitHub: github.com/jayleicn/singularity


  • 《Progressive Distillation for Fast Sampling of Diffusion Models》

GitHub: github.com/Hramchenko/diffusion_distiller

  • 《Neural Basis Models for Interpretability》

GitHub: github.com/facebookresearch/nbm-spam


  • 《Scalable Interpretability via Polynomials》

GitHub: github.com/facebookresearch/nbm-spam


  • 《Infinite Recommendation Networks: A Data-Centric Approach》


GitHub: github.com/noveens/infinite_ae_cf


  • 《The GatedTabTransformer. An enhanced deep learning architecture for tabular modeling》

GitHub: github.com /radi-cho/GatedTabTransformer

Usage:

import torchimport torch.nn as nnfrom gated_tab_transformer import GatedTabTransformer
model = GatedTabTransformer( categories = (10, 5, 6, 5, 8), # tuple containing the number of unique values within each category num_continuous = 10, # number of continuous values transformer_dim = 32, # dimension, paper set at 32 dim_out = 1, # binary prediction, but could be anything transformer_depth = 6, # depth, paper recommended 6 transformer_heads = 8, # heads, paper recommends 8 attn_dropout = 0.1, # post-attention dropout ff_dropout = 0.1, # feed forward dropout mlp_act = nn.LeakyReLU(0), # activation for final mlp, defaults to relu, but could be anything else (selu, etc.) mlp_depth=4, # mlp hidden layers depth mlp_dimension=32, # dimension of mlp layers gmlp_enabled=True # gmlp or standard mlp)
x_categ = torch.randint(0, 5, (1, 5)) # category values, from 0 - max number of categories, in the order as passed into the constructor above






请到「今天看啥」查看全文