伴随着柔性电子技术的发展,各种电子产品应运而生。正如微电子技术为大规模集成电路和计算机芯片技术提供技术平台一样,柔性电子技术为新产品的研发提供了崭新的的技术平台。柔性电子产品目前正处于研发起步阶段,部分产品已经投放市场。从现在的研发趋势来看,柔性电子技术在以下3个方面有着广泛的应用。
1 、柔性电子显示器
柔性电子显示器(flexible electronic display)是在柔性电子技术平台上研发出来的全新产品。与传统平板显示器不同,这种显示器能够被反复的弯曲和折叠,因而给我们的生活带来极大的便利。
例如,所有可视资料,包括各种书籍、报纸、杂志和视频文件都可以通过这种显示器来呈现,而且可以随时随地观看。尽管目前流行的MP4播放器和个人数字助理器(personal digital assistant,PDA)也能满足这样的使用需要,但其显示屏不能弯曲和折叠,只能在很小的屏幕范围内阅读和观看这些文字和视频,视觉效果受到极大的制约。相比而言,柔性电子显示器具有无可比拟的优势,它就像报纸一样,在需要时将其展开,使用完毕后将其卷曲甚至折叠,在保证携带方便的同时充分的兼顾了视觉效果。
柔性电子显示器的样品目前已研制成功,相信离进入市场已为时不远.值得一提的是,柔性电子显示器采用更多的轻质有机材料取代无机材料,所以其重量比传统显示器轻,这种特性有利于提高其便携性。此外,高分子有机材料的使用为降低成本提供了可能性。另外,柔性电子显示器具有薄厚度的特点,其厚度可以远远小于目前流行的液晶显示器,所以柔性电子显示器的另一种名称就是纸状电子显示器(paper—like electronic display)。
2 、薄膜太阳能电池板
薄膜太阳能电池板(thin film solar cel1)是柔性电子技术的另一项具体应用.在当今世界里,能源已成为全球高度关注的话题,而我国不仅面临能源短缺,还面临环境污染.太阳能作为一种清洁能源,可以在环境零污染的前提下有效的缓解能源短缺的矛盾。
作为最常用的利用太阳能的方式,太阳能电池板能够以最低的成本覆盖较大的面积从而有效的利用太阳能。目前,非晶硅薄膜(thin film amorphous Sili—Con)太阳能电池板已经研发成功并进入市场销售。
基于柔性电子技术的薄膜太阳能电池板能够满足大功率的发电需要,比如可以在阳光充足的沙漠地区太阳能发电厂里使用这种薄膜太阳能电池板。
除此以外,还可以充分利用其柔韧和轻质的特点,将其集成在衣服上。穿上这种衣服在阳光下行走或运动,随身携带的小电器(例如MP3播放器和笔记本电脑)的电源就可由衣服上的薄膜太阳能电池板供给,从而达到即节约又环保的目的。
3、柔性电子在RFID领域的应用背景
射频识别(RFID)技术以无需人工接触即可完成信息输入和处理、操作快捷方便、发展迅速等特点,广泛运用于生产、物流、交通、医疗、食品、防伪等领域。射频识别系统通常由应答器、阅读器组成。
电子标签是应答器诸多形式中的一种,可以理解为一种薄膜型构造的应答器,具有使用方便、体积小、轻薄、可嵌入产品内等特点。未来的射频识别系统中将越来越多的使用电子标签。
电子标签的构造形势朝着轻、薄、小、软的方向发展的趋势。在这方面,柔性电子器件有着别的材料无法比拟的优势,因此在射频识别系统的电子标签未来的发展很可能会与柔性电子制造相结合,使得RFID电子标签的使用更加广泛和方便。另外,还可以很大程度上降低成本,带来更高的效益。这也是柔性电子制造将来的发展方向之一。
制作低成本柔性电子标签具有两方面的意义。一方面,是制作柔性电子器件的有益尝试。电子电路与电子器件朝着“轻、薄、小、软”的方向发展,而柔性电子电路与电子器件的开发研制则更引人注目。
例如现在已经能够生产的柔性电路板,是一种含有精致导线,采用薄薄的、柔顺的聚合物薄膜制造的电路,它能够适用表面安装技术并能够被弯曲为无数种所需形状。
采用SMT技术的柔性电路很薄、很轻巧,绝缘厚度小于25微米,这种柔性电路能够被任意弯曲并且可以弯曲后放入圆柱体中,以充分利用三维体积。
它打破了传统固有使用面积的思维定势,从而形成充分利用体积形状的能力,这能够在目前的采用的方法上极大的增加有效使用密度,形成高密度组装形式。顺应了电子产品“柔性化”的发展趋势。
另一方面,能够加速射频识别技术在我国的被认识和发展的过程。射频识别系统中,应答器是技术关键所在。电子标签是RFID应答器诸多形式中的一种,而柔性化的电子标签更是适用于更多场合,电子标签成本的降低将大力推动射频识别技术的真正广泛应用。
4、 电子皮肤
柔性电子技术的另一项重要应用就是电子皮肤(electronic skin)。 电子皮肤又称为皮肤状电子,其基本特征是将各种电子元器件集成在柔性基板之上从而形成皮肤状的电路板,像皮肤一样具有很高的柔韧性和弹性,可以用于许多其它电器设备。
例如,在机器人技术中可以广泛的应用电子皮肤:电子皮肤集成了各种传感器和导电体,将外界的受力或受热情况转换为电信号后传递给机器人的电脑进行信号处理,因此电子皮肤又称敏感皮肤(sensitive skin)。
电子皮肤的两个最基本的特点可以概括为:
1)像人的皮肤一样具有柔性和弹性以便机器人可以像真人一样行动灵活和敏捷。
2)电子皮肤上分布传感器以便机器人能敏锐的感觉到外界环境的变化。
目前,国内外对电子皮肤的研究方兴未艾。针对机器人皮肤的重要电子元器件—— 传感器,国内在其原理及应用研究方面取得了一定进展。 基于红外传感器的电子皮肤的设计方法,提高了机器人对未知环境的感知能力以便及时避让障碍物。
此外, 解决了电子皮肤中诸多传感器的信号融合问题。 由于PVDF压电薄膜具有压电能力高,柔韧,极薄,质轻,很接近人体皮肤的特性,因此国内外围绕该材料进行电子皮肤传感器的研究较为普遍。
国外对电子皮肤的相关问题研究也取得了相当的进展.日本的研究人员不仅发展了电子皮肤的相关理论,更是制造出试验性产品. 针对电子皮肤的力感受问题进行研究,通过建立受力与传感器电容的关系探讨了实现力传感的可能性。
尽管电子皮肤的基本原理并不复杂,但是如何给机器人覆盖电子皮肤具有相当的挑战性,因为电子皮肤是感受机器人全身的外界环境,必须具有整体性,同时,电子皮肤作为一种外表部件,存在受外部因素而损坏的可能性。当电子皮肤的整体或部分损坏时,需要及时更换。
针对电子皮肤的这种需求、提出了电子皮肤单元模块的概念,通过连续总线(serialbus)连接各个单元模块,从而实现了电子皮肤的整体性与可扩展性的统一.但是,电线的使用不可避免的增加了电子皮肤的重量,电线的绝缘橡胶层也在一定程度上制约了电子皮肤的柔软性。
在这种情况下, 对电子皮肤的连接导体进行了深入研究,提出了金属(金)薄膜附着在预拉伸的聚对苯二甲酸乙二醇酯,俗称聚酯基板上的新技术。实验表明这种金属薄膜在大到一倍的拉伸变形下(即应变达到100%)仍可导电。
针对电子皮肤传感器的研究目前大多集中于单一外界信息的传感(例如力)。但是,作为电子皮肤,对多重外界信息的传感非常重要,即能同时感受到力、温度、湿度等外界刺激。要实现该目标,至少需要在3个方面实现技术突破:
(1)材料选择:传感器传感功能的实现在一定程度上依赖于传感器材料的功能特性,例如压电性、热释电性或半导性,所以对功能材料的研究和应用影响着传感器技术的发展。
(2)多重敏感信号的处理:一个完整的(机器人)电子皮肤上汇集着相当数量的感受微元,每个感受微元都具备对外界环境进行响应的功能,在某些情况下每个感受微元还要同时对多重信号(例如同时感受力和热)进行响应。在信号量相当巨大的情况下,如何对信号进行处理进而确定机器人对外界刺激的对策是一项重要课题。
(3)电子皮肤力学性能的优化:作为柔性电子技术的重要应用,电子皮肤必须满足在强度保证下柔韧性的实现;在不产生破坏前提下的最轻质量优化设计也是需要考虑的重要内容。
除了机器人,在人造器官中也可以应用电子皮肤,例如治疗心脏病所用的人造心脏,当然这对电子皮肤的材料提出了更苛刻的要求。总之,电子皮肤充分发挥了柔性电子系统结构轻质、柔韧的特点,具有广泛的应用前景。