专栏名称: 极市平台
极市平台是由深圳极视角推出的专业的视觉算法开发与分发平台,为视觉开发者提供多领域实景训练数据库等开发工具和规模化销售渠道。本公众号将会分享视觉相关的技术资讯,行业动态,在线分享信息,线下活动等。 网站: http://cvmart.net/
目录
相关文章推荐
哔哩哔哩  ·  猫和老鼠来B站,自己鬼畜自己 ·  17 小时前  
你的Sneaker  ·  全国多地发售!Nike Kobe 6 ... ·  昨天  
你的Sneaker  ·  全国多地发售!Nike Kobe 6 ... ·  昨天  
电商报Pro  ·  刘强东搞低价,一出手就是王炸 ·  昨天  
蛋先生工作室  ·  2025年2月11日最新蛋价(早报) ·  昨天  
电子商务研究中心  ·  《2024年中国新零售“百强榜”》候选名单发 ... ·  2 天前  
51好读  ›  专栏  ›  极市平台

OpenVINO部署Mask-RCNN实例分割网络

极市平台  · 公众号  ·  · 2024-08-11 22:00

正文

↑ 点击 蓝字 关注极市平台

作者丨gloomyfish
来源丨OpenCV学堂
编辑丨极市平台

极市导读

OpenVINO 是英特尔推出的一款全面的工具套件,用于快速部署应用和解决方案,支持计算机视觉的CNN网络结构超过150余种。本文展示了用 Ope nVINO 部署Mask-RCNN实例分割网络的详细过程及代码演示。 >> 加入极市CV技术交流群,走在计算机视觉的最前沿

模型介绍

OpenVINO支持Mask-RCNN与yolact两种实例分割模型的部署,其中Mask-RCNN系列的实例分割网络是OpenVINO官方自带的,直接下载即可,yolact是来自第三方的公开模型库。

这里以instance-segmentation-security-0050模型为例说明,该模型基于COCO数据集训练,支持80个类别的实例分割,加上背景为81个类别。

OpenVINO支持部署Faster-RCNN与Mask-RCNN网络时候输入的解析都是基于两个输入层,它们分别是:

im_data : NCHW=[1x3x480x480]im_info: 1x3 三个值分别是H、W、Scale=1.0

输出有四个,名称与输出格式及解释如下:

  • name: classes, shape: [100, ]
    预测的100个类别可能性,值在[0~1]之间

  • name: scores: shape: [100, ]
    预测的100个Box可能性,值在[0~1]之间

  • name: boxes, shape: [100, 4]
    预测的100个Box坐标,左上角与右下角,基于输入的480x480

  • name: raw_masks, shape: [100, 81, 28, 28]
    Box ROI区域的实例分割输出,81表示类别(包含背景),28x28表示ROI大小。

上面都是官方文档给我的关于模型的相关信息,但是我发现该模型的实际推理输raw_masks输出格式大小为: 100x81x14x14 这个算文档没更新吗?

代码演示

这边的代码输出层跟输入层都不止一个,所以为了简化,我用了两个for循环设置了输入与输出数据精度,然后直接通过hardcode来获取推理之后各个输出层对应的数据部分,首先获取类别,根据类别ID与Box的索引,直接获取实例分割mask,然后随机生成颜色,基于mask实现与原图BOX ROI的叠加,产生了实例分割之后的效果输出。完整的演示代码分为下面几步: IE引擎初始化与模型加载


InferenceEngine::Core ie;std::vector<std::string> coco_labels;read_coco_labels(coco_labels);




    
cv::RNG rng(12345);
cv::Mat src = cv::imread("D:/images/sport-girls.png");cv::namedWindow("input", cv::WINDOW_AUTOSIZE);int im_h = src.rows;int im_w = src.cols;
InferenceEngine::CNNNetwork network = ie.ReadNetwork(xml, bin);InferenceEngine::InputsDataMap inputs = network.getInputsInfo();InferenceEngine::OutputsDataMap outputs = network.getOutputsInfo();
设置输入与输出数据格式
std::string image_input_name = "";std::string image_info_name = "";int in_index = 0;for (auto item : inputs) {    if (in_index == 0) {        image_input_name = item.first;        auto input_data = item.second;        input_data->setPrecision(Precision::U8);        input_data->setLayout(Layout::NCHW);    }    else {        image_info_name = item.first;        auto input_data = item.second;        input_data->setPrecision(Precision::FP32);    }    in_index++;}
for (auto item : outputs) { std::string output_name = item.first; auto output_data = item.second; output_data->setPrecision(Precision::FP32); std::cout << "output name: " << output_name << std::endl;}

设置blob输入数据与推理

auto executable_network = ie.LoadNetwork(network, "CPU");auto infer_request = executable_network.CreateInferRequest();
auto input = infer_request.GetBlob(image_input_name);matU8ToBlob(src, input);
auto input2 = infer_request.GetBlob(image_info_name);auto imInfoDim = inputs.find(image_info_name)->second->getTensorDesc().getDims()[1];InferenceEngine::MemoryBlob::Ptr minput2 = InferenceEngine::as<:memoryblob>(input2);auto minput2Holder = minput2->wmap();float *p = minput2Holder.as<:precisiontrait>::value_type *>();p[0] = static_cast<float>(inputs[image_input_name]->getTensorDesc().getDims()[2]);p[1] = static_cast<float>(inputs[image_input_name]->getTensorDesc().getDims()[3]);p[2] = 1.0f;
infer_request.Infer();

解析输出结果

auto scores = infer_request.GetBlob("scores");auto boxes = infer_request.GetBlob("boxes");auto clazzes = infer_request.GetBlob("classes");auto raw_masks = infer_request.GetBlob("raw_masks");const float* score_data = static_cast::value_type*>(scores->buffer());const float* boxes_data = static_cast::value_type*>(boxes->buffer());const float* clazzes_data = static_cast::value_type*>(clazzes->buffer());const auto raw_masks_data = static_cast::value_type*>(raw_masks->buffer());const SizeVector scores_outputDims = scores->getTensorDesc().getDims();const SizeVector boxes_outputDims = boxes->getTensorDesc().getDims();const SizeVector mask_outputDims = raw_masks->getTensorDesc().getDims();const int max_count = scores_outputDims[0];const int object_size = boxes_outputDims[1];printf("mask NCHW=[%d, %d, %d, %d]\n", mask_outputDims[0], mask_outputDims[1], mask_outputDims[2], mask_outputDims[3]);int mask_h = mask_outputDims[2];int mask_w = mask_outputDims[3];size_t box_stride = mask_h * mask_w * mask_outputDims[1];for (int n = 0; n < max_count; n++) {    float confidence = score_data[n];    float xmin = boxes_data[n*object_size] * w_rate;    float ymin = boxes_data[n*object_size + 1] * h_rate;    float xmax = boxes_data[n*object_size + 2] * w_rate;    float ymax = boxes_data[n*object_size + 3] * h_rate;    if (confidence > 0.5) {        cv::Scalar color(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));        cv::Rect box;        float x1 = std::min(std::max(0.0f, xmin), static_cast<float>(im_w));        float y1 = std::min(std::max(0.0f,ymin), static_cast<float>(im_h));        float x2 = std::min(std::max(0.0f, xmax), static_cast<float>(im_w));        float y2 = std::min(std::max(0.0f, ymax), static_cast<float>(im_h));        box.x = static_cast<int>(x1);        box.y = static_cast<int>(y1);        box.width = static_cast<int>(x2 - x1);        box.height = static_cast<int>(y2 - y1);        int label = static_cast<int>(clazzes_data[n]);        std::cout <<"confidence: "<< confidence<<" class name: "<< coco_labels[label] << std::endl;        // 解析mask        float* mask_arr = raw_masks_data + box_stride * n + mask_h * mask_w * label;        cv::Mat mask_mat(mask_h, mask_w, CV_32FC1, mask_arr);        cv::Mat roi_img = src(box);        cv::Mat resized_mask_mat(box.height, box.width, CV_32FC1);        cv::resize(mask_mat, resized_mask_mat, cv::Size(box.width, box.height));        cv::Mat uchar_resized_mask(box.height, box.width, CV_8UC3,color);        roi_img.copyTo(uchar_resized_mask, resized_mask_mat <= 0.5);        cv::addWeighted(uchar_resized_mask, 0.7, roi_img, 0.3, 0.0f, roi_img);        cv::putText(src, coco_labels[label].c_str(), box.tl()+(box.br()-box.tl())/2, cv::FONT_HERSHEY_PLAIN, 1.0, cv::Scalar(0, 0, 255), 1, 8);    }}

最终程序测试结果:







请到「今天看啥」查看全文