时空预测引领了新的热点,时间序列预测领域的首个大模型 TimeGPT 引起业界热议,Transformer+时序,扩散模型+时序更是顶会新方向大热“种子”选手,时序+多方向正在成为这个AI界瞩目的黑马!
本文整理了时间序列的
时序预测 / 时序-Transformer / 时序-大模型 / 时序-扩散四大方向
的最新论文204篇。
ICLR2024
ClimODE: Climate Forecasting With Physics-informed Neural ODEs
AAL2024
MSGNet: Learning Multi-Scale Inter-Serjes Correlations for Multivariate Time Series Forecasting
NeurIPS2023
Frequency-domain MLPs are More Effective Lea深度之眼整理rners in Time Series Forecasting
ICML 2023
Learning Deep Time-index Models for Time S深度之眼整理eries Forecasting
KDD 2023
TSMixer: Lightweight MLP-Mixer Model fo深度之眼整理r Multivariate Time Series Forecasting
1.iTransformer: InvertedTransformers Are Effective for Time Series Forecastina
2.Pathformer: Multi- Scale Transformers With Adaptive Pathways For Time Series Forecasting
3.SCALEFORMER: ITERATIVE MULTI-SCALE REFINING TRANSFORMERS FOR TIME
SERIESFORECASTING
4.InParformer: Evolutionary Decomposition Transformers with Interactive Parallel Attentionfor Long
Term Time Series Forecasting
5.ContiFormer: Continuous-Time Tansformer for Irreqular Time Series Modeling
卷积神经网络方法(4种算法模型)
1.CNN
Recent advances in convolutional neural networks
2.WaveNet-CNN
Conditional time series forecasting with convolutional neural networks
3.Kmeans-CNN
Short-term load forecasting in smart grid: a combined CNN and K-means clustering approach
4.TCN
An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
循环神经网络方法
(3种算法模型)
1.RNN
Bidirectional recurrent neural networks
2.LSTM(长短期记忆网络)
Long short-term memory
3.GRU(门控循环单元)
Learning phrase representations using RNN encoder- decoder for statistical machine translation
Transformer方法(11种算法模型)
1.Transformer
Attention-based models for speech recognition
2.BERT
BERT: pre-training of deep bidirectional transformers for language understanding
3.AST
Adversarial sparse transformer for time series forecasting
4.Informer
Informer: beyond efficient transformer for long sequence time-series forecasting
1.基于Promtpt的方法
Leveraging Language Foundation Models for HumanMobility Forecasting
2.将时间序列进行离散化处理
AudioLM: a Language Modeling Approach to Audio Generation
3.时间序列-文本对齐代表论文
Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot Sentiment Classification
4.引入视觉信息
Leveraging Vision-Language Models for Granul深度之眼整理tar Market Change Prediction
5.大模型工具
Unleashing the Power of Shared Label Structures for Human Activity Recognition
针对目前的大热时序,我们请来了顶会审稿人
chichi老师在
5月29日晚20:00
解读
时空时序
大模型
预备知识+论文
。
课程大纲:
-
时序预测研究内容
-
时序数据编码
-
时序预测解码
-
损失函数
-
大语言模型 for 时序
-
LLM for time series 论文解读
-
微调LLM做时空时序预测
-
语言增强的时序/时空预测模型
-
LLM做时序预测的未来挑战与研究方向
-
核心代码
另外,我们准备了
32节时间序列系列课程
基础上
,
课程分为五个模块。
0.01元
解锁《时间序列系列课》
32节课+37h+部分课件+部分课堂作业及代码