Bonferroni correction is a method used to counteract the problem of multiple comparisons. The correction is based on the idea that if an experimenter is testing n dependent or independent hypotheses on a set of data, then one way of maintaining the familywise error rate is to test each individual hypothesis at a statistical significance level of 1/n times what it would be if only one hypothesis were tested. So, if it is desired that the significance level for the whole family of tests should be (at most) α, then the Bonferroni correction would be to test each of the individual tests at a significance level of α/n.