点击上方
“
小白学视觉
”,选择加"
星标
"或“
置顶
”
重磅干货,第一时间送达
今天,我们将研究如何在OpenCV框架中使用YOLO。YOLO于2016年问世,用于多目标检测,它与OpenCV框架兼容,但我们需要下载“ yolov3.weights”和“yolov3.cfg”。
现在让我们来看一下代码,它相当简单。第一步将是导入模型并读取包含图像标签的“coco.names”并获取输出层。
下一步是读取输入图像,并创建Blob从输入图像中提取特征。图像的输入尺寸为416 * 416,(0,0,0)表示图像的色彩空间。
我们将遍历该blob并找出已检测到的对象。但是在此之前,我们必须将blob馈给yolo算法并从输出层提取其特征。我们可以将其与CNN模型相关联。才外,我们还对置信度预测超过50%的对象感兴趣。
挑战在于分离算法检测到的冗余对象。最后,我们可以创建一个边界框并显示图像。
希望本文对大家理解我们如何在OpenCV框架中使用YOLO有所帮助。
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。