转眼就开工了,7 天的假期,刷刷抖音,说走就走了。
说到抖音,就不得不提它的推荐系统,太 NB 了。刷了啥,立刻记住你的偏好,推荐相似内容,一不小心 2 小时就过去了,让人欲罢不能,要么日活 6 亿呢。
其实“推荐系统”从没像现在这样,影响着我们的生活。除了抖音、快手这类短视频,还有网购时,天猫、京东会为你推荐商品;想看看资讯,头条、知乎会为你准备感兴趣的新闻等等。
而驱动这些巨头进行推荐服务的,都是
基于深度学习的推荐模型。
想起 2019 年阿里的千人千面系统,促成了天猫“双 11” 2684 亿成交额。假设通过改进商品推荐功能,使平台整体的转化率提升 1%,就能在 2684 亿成交额的基础上,再增加 26.84 亿。这就是推荐工程师的最牛的地方,
也是为啥人能拿百万年薪的原因。
但在一个成熟的推荐系统上,找到提升的突破点并不容易——不能满足于协同过滤、矩阵分解这类传统方法,而要建立起完整的“深度学习推荐系统”知识体系,加深对深度学习模型的理解,以及大数据平台的熟悉程度,才能实现整体效果上的优化。
所以春节假期除了刷抖音,我又重新看了看
《深度学习推荐系统》
这个专栏,2 刷有不少新的启发。作者王喆,Roku 推荐系统架构负责人,也是咱圈里的大佬,一直深耕在推荐系统、计算广告领域,经验非常丰富。他之前出过同名的书,
豆瓣评分 9.3
,相当高。
当年我看书的时候,就感觉实践太少,偏模型原理。所以在听说王喆开了个
实践专栏
时,第一时间就订阅了,跟着学下来,受益匪浅。让我完整地把推荐系统的原理捋了一遍。下面王喆总结的
「核心知识图谱」
,建议收藏。
最重要的是,
实操性特别强
。王喆特地为了这个专栏,开发了一个开源项目
「 SparrowRecsys」
,能让你亲手尝试,搭建一套完整的深度学习推荐系统(下面有详细介绍,贼有意思)。可以说是书的实践版本,里面加入了更多技术细节的实现和讨论。
毫不夸张的说,这个专栏让我对深度学习推荐系统的认知,提升到了一个新高度,所以很想把它推荐给你。最近这个专栏要
涨价到 ¥129
了,现在到手仅
¥69
,一定别错过了,扫码免费试读👇
秒杀+口令「
shendu666
」
到手仅
¥69
,即将涨至 ¥129
王喆这课,为啥值得买?
先来说说这个 SparrowRecsys 推荐系统。王喆把它叫做“麻雀推荐系统”,取“麻雀虽小、五脏俱全”之意,它利用了开源的 movielens 数据集,搭建起了包括:
Spark、Flink 特征工程
TensorFlow 深度学习模型训练
TensorFlow Serving 模型服务
Redis 在线特征数据库
Jetty Server 推荐服务器
JS 前端实现
以上这些在内的,一整套深度学习推荐系统。不说它能支撑起一个中大型公司的推荐系统,但是毫无疑问,它可以成为一个
工业级推荐系统的种子项目
。而这一切,都能在课程里,一步步尝试搭建起来。
最后你实现的推荐系统会是这个样子👇
SparrowRecSys的首页
SparrowRecSys的相似电影推荐页