专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
爱可可-爱生活  ·  【Electrobun:新型跨平台桌面应用开 ... ·  2 天前  
爱可可-爱生活  ·  【电子印章工具:Draw Stamp ... ·  6 天前  
爱可可-爱生活  ·  【Mistral AI ... ·  6 天前  
机器学习研究组订阅  ·  Scaling ... ·  1 周前  
51好读  ›  专栏  ›  机器学习研究会

【学习】网络表示学习比较有代表性的论文列表及其代码

机器学习研究会  · 公众号  · AI  · 2017-05-16 19:16

正文



点击上方“机器学习研究会”可以订阅哦
摘要
 

转自:涂存超

清华大学涂存超博士等人我们整理了最近几年有关网络表示学习(network representation learning/network embedding)比较有代表性的论文列表及其代码,后续也会持续在github上更新该列表。想要了解网络表示学习工作的同学可以参考。

Must-read papers on NRL/NE.

NRL: network representation learning. NE: network embedding.

Contributed by Cunchao Tu and Yuan Yao.

  1. DeepWalk: Online Learning of Social Representations.Bryan Perozzi, Rami Al-Rfou, Steven Skiena.  KDD 2014. code

  2. Learning Latent Representations of Nodes for Classifying in Heterogeneous Social Networks.Yann Jacob, Ludovic Denoyer, Patrick Gallinar. WSDM 2014

  3. Non-transitive Hashing with Latent Similarity Componets.Mingdong Ou, Peng Cui, Fei Wang, Jun Wang, Wenwu Zhu.  KDD 2015

  4. GraRep: Learning Graph Representations with Global Structural Information.Shaosheng Cao, Wei Lu, Qiongkai Xu.  CIKM 2015. code

  5. LINE: Large-scale Information Network Embedding.Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, Qiaozhu Me.  WWW 2015. code

  6. Network Representation Learning with Rich Text Information.Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, Edward Y. Chang.  IJCAI 2015. code

  7. PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks.Jian Tang, Meng Qu, Qiaozhu Mei.  KDD 2015

  8. Asymmetric Transitivity Preserving Graph Embedding.Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, Wenwu Zhu.  KDD 2016

  9. Revisiting Semi-supervised Learning with Graph Embeddings.Zhilin Yang, William W. Cohen, Ruslan Salakhutdinov. ICML 2016

  10. node2vec: Scalable Feature Learning for Networks.Aditya Grover, Jure Leskovec.  KDD 2016. code

  11. Max-Margin DeepWalk: Discriminative Learning of Network Representation.Cunchao Tu, Weicheng Zhang, Zhiyuan Liu, Maosong Sun.  IJCAI 2016. code

  12. Structural Deep Network Embedding.Daixin Wang, Peng Cui, Wenwu Zhu.  KDD 2016

  13. Community Preserving Network Embedding.Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, Shiqiang Yang. AAAI 2017

  14. Semi-supervised Classification with Graph Convolutional Networks.Thomas N. Kipf, Max Welling. ICLR 2017. code

  15. CANE: Context-Aware Network Embedding for Relation Modeling.Cunchao Tu, Han Liu, Zhiyuan Liu, Maosong Sun. ACL 2017. code

  16. Fast Network Embedding Enhancement via High Order Proximity Approximation.Cheng Yang, Maosong Sun, Zhiyuan Liu, Cunchao Tu. IJCAI 2017.

  17. TransNet: Translation-Based Network Representation Learning for Social Relation Extraction.Cunchao Tu, Zhengyan Zhang, Zhiyuan Liu, Maosong Sun. IJCAI 2017. code


链接:

https://github.com/thunlp/NRLpapers


原文链接:

http://weibo.com/2313655094/F3musD34g?type=comment#_rnd1494923958321

“完整内容”请点击【阅读原文】
↓↓↓