原理
simhash值的生成图解如下
大概花三分钟看懂这个图就差不多怎么实现这个simhash算法了。特别简单。谷歌出品嘛,简单实用。
算法过程大概如下:
1、将Doc进行关键词抽取(其中包括分词和计算权重),抽取出n个(关键词,权重)对, 即图中的(feature, weight)
们。 记为 feature_weight_pairs
= [fw1, fw2 … fwn],其中 fwn = (
feature_n,
weight_n`)。
2、hash_weight_pairs = [ (hash(feature), weight) for feature, weight infeature_weight_pairs ] 生成图中的(hash,weight)们, 此时假设hash生成的位数bits_count = 6(如图);
3、然后对 hash_weight_pairs 进行位的纵向累加,如果该位是1,则+weight,如果是0,则-weight,最后生成bits_count个数字,如图所示是[13, 108, -22, -5, -32, 55], 这里产生的值和hash函数所用的算法相关。
4、[13,108,-22,-5,-32,55] -> 110001这个就很简单啦,正1负0。
到此,如何从一个doc到一个simhash值的过程已经讲明白了。 但是还有一个重要的部分没讲,
『simhash值的海明距离计算』
二进制串A 和 二进制串B 的海明距离 就是 A xor B
后二进制中1的个数。
举例如下:
A = 100111;
B = 101010;
hamming_distance(A, B) = count_1(A xor B) = count_1(001101) = 3;
当我们算出所有doc的simhash值之后,需要计算doc A和doc B之间是否相似的条件是:
A和B的海明距离是否小于等于n,这个n值根据经验一般取值为3,
simhash本质上是局部敏感性的hash,和md5之类的不一样。 正因为它的局部敏感性,所以我们可以使用海明距离来衡量simhash值的相似度。
『高效计算二进制序列中1的个数』
/* src/Simhasher.hpp */
bool isEqual(uint64_t lhs, uint64_t rhs, unsigned short n = 3){
unsigned short cnt = 0;
lhs ^= rhs;
while(lhs && cnt n)
{
lhs &= lhs - 1;
cnt++;
}
if(cnt n)
{
return true;
}
return false;}
由上式这个函数来计算的话,时间复杂度是 O(n); 这里的n默认取值为3。由此可见还是蛮高效的。
『计算二进制序列中1的个数之O(1)算法实现』
感谢 @SCatWang 的评论分享:
感谢您做的simhash库,感觉会很方便。 有关求二进制中1的个数,其实有各种O(1)的实现。可以参考这个地方:http://stackoverflow.com/a/14682688
simhash 实现的工程项目
C++ 版本 simhash
Golang 版本 gosimhash
主要是针对中文文档,也就是此项目进行simhash之前同时还进行了分词和关键词的抽取。
对比其他算法
『百度的去重算法』
百度的去重算法最简单,就是直接找出此文章的最长的n句话,做一遍hash签名。n一般取3。 工程实现巨简单,据说准确率和召回率都能到达80%以上。
『shingle算法』
shingle原理略复杂,不细说。 shingle算法我认为过于学院派,对于工程实现不够友好,速度太慢,基本上无法处理海量数据。
『其他算法』
具体看微博上的讨论
参考
●本文编号2226,以后想阅读这篇文章直接输入2226即可。
●本文分类“算法”,搜索分类名可以获得相关文章。
●输入m可以获取到文章目录
算法与数据结构↓↓↓
大数据技术↓↓↓
更多推荐《15个技术类公众微信》
涵盖:程序人生、算法与数据结构、黑客技术与网络安全、大数据技术、前端开发、Java、Python、Web开发、安卓开发、iOS开发、C/C++、.NET、Linux、数据库、运维等。