专栏名称: AI与医学
分享前沿的人工智能与医学交叉研究,提供医疗科研服务。关注大壮,科研顺畅。做医护人员科研的小助手,为您全心全意服务。
51好读  ›  专栏  ›  AI与医学

征稿了!脑电、心电、肌电都可以,二区6分。IEEE J-BHI特刊:迈向生物医学信号的基础模型,以促进医疗保健

AI与医学  · 公众号  · 科技自媒体  · 2024-10-04 00:34

主要观点总结

本文介绍了关于生物医学信号和AI结合在医疗领域的应用,特别是征稿启事的相关内容。文章还提供了相关的论文参考和顶刊速看系列。

关键观点总结

关键观点1: 人工智能(AI)与生物医学信号的融合为医疗领域带来巨大机会

AI在生物医学信号分析中的应用,如心电图、脑电图和肌电图的分析,有助于提高医疗评估的准确性、效率和可访问性。

关键观点2: 征稿启事关于AI在生物医学信号分析中的特殊议题

邀请原创研究文章、综述和案例研究,涉及机器学习在生物医学信号分析中的应用,包括疾病诊断、可视化改善、自动报告生成、不良事件检测等。

关键观点3: IEEE JBHI期刊的IF值为6.7的相关论文

提到了基于深度学习和脑电图实现扩散性去极化的实时无创检测等论文,这些论文展示了AI在医学中的应用。

关键观点4: 其他相关论文和顶刊速看系列

包括JAMA Network Open、NC(Nature Communications)等顶级期刊上发表的关于AI在医学中的最新研究进展,如基于人工智能的皮瓣监测系统、基于深度学习心电图的先天性心脏病检测等。


正文

请到「今天看啥」查看全文


点击👆蓝字或👇名片,关注"AI与医学"



受委托帮忙宣传,生物医学信号和AI结合是一个好的方向!!!,欢迎大家投稿。前两期帝国理工吴博士投的就是这个期刊 (链接 IEEE JBHI IF=6.7 基于深度学习和脑电图实现扩散性去极化的实时无创检测 )。本号以前也分享了很多关于生物信号的论文,大家可以参考,技术方面问题欢迎和大壮交流。



0.官网材料下载

https://www.embs.org/jbhi/wp-content/uploads/sites/18/2024/09/JBHI_Foundation_Models_of_Biomedical_Signals_for_Healthcare_SI-1.pdf

恰饭广告: 医生朋友们经常会用到笔,笔也经常会丢,可以屯点笔。

1.征稿说明中文版本

人工智能(AI)和医疗保健的快速发展为工程师、计算研究人员和医学专家提供了巨大的机会,以开发创新的算法用于健康监测、医学诊断和治疗建议,最终惠及医生和患者。


生物医学信号, 如心电图(ECG)、脑电图(EEG)和肌电图(EMG),在非侵入性监测和诊断各种健康状况中发挥着至关重要的作用 。这些生物医学信号富含临床有用的信息,分别反映了心脏、大脑和肌肉的生理和病理状态。将AI与这些信号相结合,为提高医疗评估的准确性、效率和可访问性开辟了新途径。 例如,在心电图领域,基于AI的算法可以自动检测一些心律失常和异常,准确度接近专家水平。然而,开发使用生物医学信号的可靠AI驱动诊断工具仍面临挑战,如噪声、干扰、伪影以及需要对长期数据流进行稳健处理。


AI的最新进展,包括大型语言模型(LLMs)、Mamba神经网络和生成性AI,为开发先进的神经网络模型以应对生物医学数据挑战开辟了新的机会。作为这一跨学科领域的基石,基础模型可能作为复杂的框架,整合大量的生物医学信号数据,并使得创建预测性、诊断性和治疗性工具成为可能,这些工具承诺将更加精确、具体和个性化,从而可能彻底改变诊断和监测领域。本期特刊旨在探索AI在生物医学信号分析中的最新进展和应用,为人的医疗保健铺平道路。


我们邀请原创研究文章、综述和案例研究,涉及但不限于以下主题:

(这些课题都超级有意思,如果有数据大壮就自己做了)


• 使用生物医学信号进行疾病诊断的 机器学习


机器学习辅助 可视化/改善生物医学信号的表示;


机器学习 用于自动报告生成;


• 使用生物医学信号进行不良事件检测(例如,猝死)的 机器学习


• 机器学习用于个 性化生物医学信号解释


机器学习用于生成逼真的生物医学信号

·

• 用于胎儿、新生儿和儿童生物医学信号分析的机器学习方法;


• 用于从不平衡的生物医学信号数据集中去偏算法的机器学习方法;


多模态机器学习 (例如,将ECG和笔记与LLMs结合,交互多个生物医学信号);


• 精心设计生物医学信号的基础模型,特别关注偏见和公平性;


• 机器学习驱动的生物医学信号分析中的监管和伦理考虑。


客座编辑


Jintai Chen,香港科技大学(广州),jimeng@illinois.edu


Shenda Hong,北京大学,hongshenda@pku.edu.cn


加里·克利福德,埃默里大学和佐治亚理工学院,gari@gatech.edu


Jimeng Sun,伊利诺伊大学厄巴纳-香槟分校,panayides@cs.ucy.ac.cy


关键日期


提交截止日期:2025年2月28日


首次审查截止日期:


2025年5月30日


修订稿截止日期:2025年8月30日


最终决定:


2025年11月31日


2.征稿原文如下

IEEE JOURNAL OF

BIOMEDICAL AND HEALTH INFORMATICS

J-BHI Special Issue on “ Towards Foundation Models of Biomedical Signals for Healthcare

The rapid evolution of artificial intelligence (AI) and healthcare presents substantial opportunities

for engineers, computational researchers, and medical experts to develop innovative algorithms for

health monitoring, medical diagnostics, and treatment recommendations, ultimately benefiting

both doctors and patients.

Biomedical signals such as the electrocardiogram (ECG), electroencephalogram (EEG), and

electromyogram (EMG) play a crucial role in the non-invasive monitoring and diagnosis of various

health conditions. These biomedical signals are rich in clinically useful information, reflecting the

underlying physiological and pathological states of the heart, brain, and muscles, respectively. The

integration of AI with these signals has opened new avenues for enhancing the accuracy, efficiency,

and accessibility of medical assessments. For example, in the realm of electrocardiogram, AI-based

algorithms can automatically detect some arrhythmias and abnormalities with close to expert-level

accuracy. However, the development of reliable AI-driven diagnostic tools that use biomedical

signals still face challenges such as noise, interference, artifacts, and the need for robust processing

of very long-term data streams.

Recent advancements in AI, including large language models (LLMs), Mamba neural network, and

Generative AI, have opened new opportunities for developing advanced neural network models to

address biomedical data challenges. As a cornerstone of this interdisciplinary field, foundation

models may serve as sophisticated frameworks, integrating vast biomedical signal data and

enabling the creation of predictive, diagnostic, and therapeutic tools that promise to be more

precise, specific, and personalized, thus potentially revolutionizing the diagnostic and monitoring

landscape. This special issue aims to explore the latest advancements and applications of AI in

biomedical signal analysis for human healthcare, that will pave the way for foundation models.

We invite original research articles, reviews, and case studies that address, but are not limited to,

the following topics:

Machine learning using biomedical signals for disease diagnosis;

Machine learning assisted visualization/improved representation for biomedical signals;

Machine learning for automated report generation;

Machine learning for adverse event detection (e.g., sudden death) using biomedical signals;

Machine learning for personalized biomedical signal interpretation;

Machine learning for realistic biomedical signal generation;

Machine learning approaches for fetal, neonatal, and pediatric biomedical signal analysis;

Machine learning approaches for debiasing algorithms from imbalanced biomedical signals

datasets;

Multimodal machine learning (e.g. combining ECG and notes with LLMs, interacting

multiple biomedical signals);

Thoughtful design of foundation models for biomedical signals, particularly with attention

to bias and fairness;

Regulatory and ethical considerations in machine-learning-powered biomedical signal

analysis. Guest Editors

Jintai Chen, Hong Kong University of Science and Technology (Guangzhou), jimeng@illinois.edu

Shenda Hong, Peking University, hongshenda@pku.edu.cn

Gari Clifford, Emory University and Georgia Institute of Technology, gari@gatech.edu

Jimeng Sun, University of Illinois at Urbana-Champaign, panayides@cs.ucy.ac.cy

Key Dates

Deadline for Submission: 28 Feb, 2025

First Reviews Due:

30 May, 2025

Revised Manuscript Due: 30 Aug, 2025

Final Decision:

31 Nov, 2025


3.往期相关论文

大家可以参考参考,论文都是有共性的,多学习,多模仿,才能创新。

IEEE JBHI IF=6.7 基于深度学习和脑电图实现扩散性去极化的实时无创检测

顶刊快看:Sci Transl Med IF=17.1神外手术未来NB小助手:一种氮化镓脑电活动可视化显示器

基于残差网络的精神分裂症脑电图特征提取和分类研究

使用全卷积FCN从多通道EEG中识别新生儿癫痫的研究


感谢您的阅读,如果您对这项研究感兴趣或想了解更多关于AI在医学中的应用,请继续关注我们,我们会定期分享最新的科研成果和健康资讯。别忘了点赞和转发哦!👍🔄


广告

快来看,大壮卖艺,提供医工交叉科研服务



— THE END —

排版:大壮

美工:大壮

注:本文仅用于分享和研究AI与医学相关学术论文

如存在侵权,请告知,及时删





NHANES


NHANES挖掘:CHINESE MEDICAL JOURNAL IF=7.5 高血压与非酒精性脂肪肝风险的孟德尔随机分析

NHANES挖掘:Nutrition & Diabetes IF4.6 体脂分布与糖尿病视网膜病变在美国糖尿病人群中的关系

普刊学习: BMC IF3.5 基于机器学习和NHANES数据预测糖尿病和心血管疾病

基础学习:《Frontiers in Immunology》IF=5.7 哮喘成年人血清铁与血液嗜酸性粒细胞计数之间的关系

往期内容

顶刊速看:《JAMA Network Open》IF=10.5 基于人工智能的皮瓣监测系统

顶刊速看:NC IF=14.7 基于深度学习心电图和人工概念特征融合的先天性心脏病检测研究

顶刊速看:NC IF=14.7 通过深度学习揭示左心房结构与心房颤动风险的联系

顶刊快看:Radiology 基于CT和AI在非小细胞肺癌节段切除术预后模型研究

顶刊快看:NatMed=82.9 基于多队列改进心血管风险预测新算法开发和验证

顶刊快看:Cell Report Medicine IF=14.3 AI在前列腺癌管理中的革命性应用 - 最新研究进展

顶刊快看:NatMed=82.9 母亲糖尿病与后代注意力缺陷/多动障碍(ADHD)风险之间的关系:基于360万母子队列数据

顶刊快看:NC IF=16.6 基于可解释机器学习的骨关节炎亚组生物标志物分析和风险预测

顶刊快看:NC IF=16.6 眼泪也可以检测血糖?使用无线智能隐形眼镜深入分析泪液葡萄糖和血糖之间的相关性








请到「今天看啥」查看全文