专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
爱可可-爱生活  ·  【[2k星]Homebox:为家庭用户打造的 ... ·  22 小时前  
爱可可-爱生活  ·  【[70星]Extract-chat:通过聊 ... ·  3 天前  
爱可可-爱生活  ·  【[276星]DeepSeekAI:一款智能 ... ·  3 天前  
爱可可-爱生活  ·  【[5星]VolumetricSMPL:让3 ... ·  5 天前  
宝玉xp  ·  o3-mini-high 是每周 50 ... ·  5 天前  
51好读  ›  专栏  ›  机器学习研究会

【推荐】全端到端渐进GAN实现多属性可控高分辨率人脸补全

机器学习研究会  · 公众号  · AI  · 2018-01-25 23:40

正文

                                                                                                                                                                                      
点击上方“机器学习研究会”可以订阅
摘要
 

转自:爱可可-爱生活

论文《High Resolution Face Completion with Multiple Controllable Attributes via Fully End-to-End Progressive Generative Adversarial Networks》摘要:

We present a deep learning approach for high resolution face completion with multiple controllable attributes (e.g., male and smiling) under arbitrary masks. Face completion entails understanding both structural meaningfulness and appearance consistency locally and globally to fill in "holes" whose content do not appear elsewhere in an input image. It is a challenging task with the difficulty level increasing significantly with respect to high resolution, the complexity of "holes" and the controllable attributes of filled-in fragments. Our system addresses the challenges by learning a fully end-to-end framework that trains generative adversarial networks (GANs) progressively from low resolution to high resolution with conditional vectors encoding controllable attributes. 
We design novel network architectures to exploit information across multiple scales effectively and efficiently. We introduce new loss functions encouraging sharp completion. We show that our system can complete faces with large structural and appearance variations using a single feed-forward pass of computation with mean inference time of 0.007 seconds for images at 1024 x 1024 resolution. We also perform a pilot human study that shows our approach outperforms state-of-the-art face completion methods in terms of rank analysis. The code will be released upon publication.





请到「今天看啥」查看全文