专栏名称: R语言与水文生态环境
本账号依托水文生态研究中心,分享水文地质、环境科学相关文献情报;科普环境、地学知识!
目录
相关文章推荐
河北交通广播  ·  【992 | ... ·  昨天  
河北交通广播  ·  【992 | 快讯】普京:俄罗斯同意停火30天 ·  2 天前  
河北交通广播  ·  【992 | ... ·  3 天前  
51好读  ›  专栏  ›  R语言与水文生态环境

【文献情报】|Journal of Hydrology|表征流域多源重金属污染场地:一种集成深度学习和数据同化的方法!

R语言与水文生态环境  · 公众号  ·  · 2024-12-06 00:02

主要观点总结

本文提出了一种新的代理模型来模拟多源污染物迁移,构建了AR-Net-DA和ES-MDA的集成反演框架,该框架能识别污染源和地质参数,可用于高效表征复杂污染场地。文章以辽宁省浑河流域为例,介绍了一个涉及多源重金属(锰)污染的案例研究,并建立了高保真的地下水流和溶质运移模型。

关键观点总结

关键观点1: 提出新的代理模型模拟多源污染物迁移

文章创新性地提出了一种代理模型,利用深度学习(AR-Net-DA)与数据同化(ES-MDA)相结合的方法,有效追踪污染源并表征场地特征。

关键观点2: 构建AR-Net-DA和ES-MDA集成反演框架

该研究构建了AR-Net-DA和ES-MDA的集成反演框架,该框架能够识别污染源和地质参数,为高效表征复杂污染场地提供了有力工具。

关键观点3: 以辽宁省浑河流域为例进行案例研究

文章选择了辽宁省浑河流域作为研究区域,通过实例研究展示了该框架在实际应用中的效果。

关键观点4: 建立高保真的地下水流和溶质运移模型

研究建立了高保真的地下水流和溶质运移模型,为理解和预测污染物在地下水中的迁移提供了重要依据。


正文

点击蓝色字体 关注我们

(一)基本信息
  • 期刊: Journal of Hydrology

  • 中科院分区: 1区 地球科学

  • 影响因子(IF):6.4

(二)作者信息
  • 第一作者:Yanhao Wu

  • 通讯作者:Mei Li and  Haijian Xie

  • 第一作者单位:State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, PR China

  • 原位连接:https://doi.org/10.1016/j.jhydrol.2024.132349

(三)文章亮点
  • (1)提出了一种代理模型来模拟多源污染物迁移;

  • (2)构建了AR - Net - DA和ES - MDA的集成反演框架;
  • (3)污染源和地质参数通过该框架进行识别;
  • (4)该框架可用于高效表征复杂污染场地。
(四)摘要
在涉及地下水污染的实际场景中,环境的复杂性极大地增加了污染源追踪和受影响场地特征刻画的难度。为了应对这些挑战,本研究提出了一种将深度学习( AR-Net-DA)与数据同化相结合的集成框架( ES-MDA )。该方法利用来自复杂污染场景的稀疏数据,有效地追踪污染源并表征场地特征。本文以辽宁省浑河流域为例,介绍了一个涉及多源重金属(锰)污染的案例研究。建立了高保真的地下水流和溶质运移模型。随后,采用创新的卷积神经网络模型AR - Net - DA,通过在不同污染源附近动态优化权重,替代传统的基于过程的地下水模型。然后将该模型集成到ES - MDA反演框架中,以同时确定污染源参数和含水层渗透率场的空间分布。结果表明,该耦合反演框架可以利用有限的观测数据准确地确定污染源位置及其释放历史,同时还可以绘制水力传导系数场的空间分布,提高了计算效率。这些发现对地下水资源管理、污染风险控制和污染场地修复具有重要意义。
(五)图文赏析

Fig. 1. Study Area (a. China b. Liaoning Province c. Hun River basin d. Sampling sites).

Fig. 2. Schematic Diagram of the Multi-Pollution Source Dynamic Weight Allocation Mechanism.

Fig. 3. Coupled Identification Framework.

Fig. 4. Schematic of the simplified Hun River groundwater model (a) and hydraulic conductivity field (b).

Fig. 5. Comparative analysis of simulated and actual values from the groundwater model (a. Water levels b. Mn concentrations in wells exceeding standards).

Fig. 6. Numerical simulation results of groundwater (The hydraulic head field (a) and the distribution of the contamination plume at time t =[300,600,900,1200,1500,1800,2100] [T] (b-h). Panels (i) depict the probability of the contamination concentration exceeding the Class III standards of the GB14848 2017 over the simulation period.).

Fig. 7. The Mn concentration fields at time t = [300,600,900,1200,1500,1800,2100] [T] (a-g) and hydraulic head field (h) in the study area predicted by the forward model ( y ) and the AR-Net-WL surrogate model with training sample size n = 500 ( ̃ y ). The difference between the predictions is denoted by ( y ̃ y ).

Fig. 8. The Mn concentration fields at time t = [300,600,900,1200,1500,1800,2100] [T] (a-g) and hydraulic head field (h) in the study area predicted by the forward model ( y ) and the AR-Net-DA surrogate model with training sample size n = 500 ( ̃ y ). The difference between the predictions is denoted by ( y ̃ y ).

Fig. 9. The frequency distribution of the maximum absolute prediction errors ( e max ) for the AR-Net-WL and AR-Net-DA networks.

Fig. 10. Accuracy comparison of surrogate models based on different training sample numbers.

Fig. 11. The Mn concentration fields at time t = [300,600,900,1200,1500,1800,2100] [T] (a-g) and hydraulic head field (h) in the study area predicted by the forward model (y) and the AR-Net-DA surrogate model with training sample size n = 3000 ( ̃ y ). The difference between the predictions is denoted by ( y ̃ y ).

Fig. 12. The estimates of log hydraulic conductivity field obtained through inversion using the ES-MDA algorithm based on both the original and surrogate models (a represents the true hydraulic conductivity field of the study area; b-d and h-j represent the three posterior estimates; e and k show the estimated means; f and l display the estimated variances).

Fig. 13. Six source location parameters { S X







请到「今天看啥」查看全文