专栏名称: 机器之心
专业的人工智能媒体和产业服务平台
目录
相关文章推荐
51好读  ›  专栏  ›  机器之心

资源 | 横向对比5大开源语音识别工具包,CMU Sphinx最佳

机器之心  · 公众号  · AI  · 2017-06-26 14:01

正文

选自svds

作者: Cindi Thompson

机器之心编译

参与:李泽南、Smith


目前开源世界里存在多种不同的语音识别工具包,它们为开发者构建应用提供了很大帮助。这些工具各有哪些优劣?数据科学公司 Silicon Valley Data Science 为我们带来了 5 种流行工具包的深度横向对比。此前,他们曾为我们带来过流行深度学习框架的对比:《 从 TensorFlow 到 Theano:横向对比七大深度学习框架 》。



作为深度学习研发团队的一员,我们对于循环神经网络(RNN)和其他语音识别需要用到的方法都有所涉及。在几年之前,业内最佳的语音识别系统还是基于语音分析的方法,包含发音、声学和语言模型。通常,这些方法包含 n-gram 语言模型,以及隐马尔科夫模型(HMM)。在此,我们以这种模型作为基准,试图对比目前流行的一些语音识别方法。迄今为止,我们很难看到有人对开源语音识别模型进行过真正对比,希望本文可以抛砖引玉,为大家带来一些帮助。


本文回顾了使用传统 HMM&n-gram 语言模型的开源语音识别工具包。对于用户而言,大多数人都会知道 Siri 或 Cortana 这样的消费产品。而对于研发工程师来说,更灵活、更具专注性的解决方案则更符合需求,很多公司都会研发自己的语音识别通路。以下是目前开源世界上出现的流行工具包,以及我们对它们的各项评价。


开源免费语音识别工具包横向对比


本次分析基于 svds 开发者的主观经验和开源社区的已有消息。上表列出了目前大部分流行的语音识别软件(但略微超出开源的范畴)。2014 年 Gaida 等人的一篇论文评估了 CMU Sphinx、Kaldi 和 HTK。其中 HTK 严格意义上来说并不是开源的,因为其代码并不能重用或作为商业用途使用。


编程语言


因为用户使用语言的情况各不相同,你可能会对特定的工具包有自己的偏好。以上工具除了 ISIP 以外都有 Python 的封装,虽然在一些情况下,Python 封装并不包括核心代码的全部功能。CMU Sphinx 也包含了其他几种编程语言,如 Java 和 C。


开发工作


在学术研究中,所有列出的项目都包含它们的来源。CMU Sphinix,显而易见,从它的名字就能看出来是卡内基梅隆大学的产物。它已经以某些形式存在了 20 年了,现在它在 Github(C (https://github.com/cmusphinx/pocketsphinx) 版本和 Java (https://github.com/cmusphinx/sphinx4) 版本)和 SourceForge (https://sourceforge.net/projects/cmusphinx/) 上都开源了,而且两个平台上都有最新活动。Github 上的 Java 版本和 C 版本都只有一个贡献者,但是这并不影响此项目的历史真实性(在 SourceForge repo 上有 9 个管理人员还有很多开发者)。


Kaldi 从 2009 年的研讨会起就有它的学术根基了,现在已经在 GitHub (https://github.com/kaldi-asr/kaldi) 上开源,有 121 名贡献者。HTK 始于 1989 年的剑桥大学,已经商用一段时间了,但是现在它的版权又回到了剑桥大学并且已经不是开源软件了。它的最新版本更新于 2015 年 12 月,先前发布于 2009 年。Julius (http://julius.osdn.jp/en_index.php) 起源于 1997 年,最后一个主要版本发布于 2016 年 9 月,有些活跃的 Github repo 包含三个贡献者,现在已经不大可能反应真实情况了。ISIP 是第一个最新型的开源语音识别系统,源于密西西比州立大学。它主要发展于 1996 到 1999 年间,最后版本发布于 2011 年,但是这个项目在 Github 出现前就已经不复存在了。







请到「今天看啥」查看全文