专栏名称: 数学爱好者俱乐部
我们是一线教师,我们都热爱数学。本公众号旨在传播数学文化,科普数学知识。你可以走近数学名师,追寻牛娃成长之路,还有烧脑趣题,数学教学经典案例分享等。
目录
相关文章推荐
超级数学建模  ·  这玩意,我在高铁上被问了一路! ·  3 天前  
超级数学建模  ·  如何评价辣妹儿? ·  4 天前  
超级数学建模  ·  限时领 | ... ·  5 天前  
超级数学建模  ·  我把闲置导师出二手了 ·  6 天前  
超级数学建模  ·  三星堆的灭亡,竟是因为“谋反”? ·  4 天前  
51好读  ›  专栏  ›  数学爱好者俱乐部

李邦河院士 | 数学从根本上:玩的是概念!而不是技巧

数学爱好者俱乐部  · 公众号  · 数学  · 2019-12-17 08:00

正文

作者 | 李邦河(中国科学院数学与系统科学研究院研究员)
来源 | 数学通报,2009年第48卷第8期
转自 | 好玩的数学(mathfun)
编辑 | 中学数学教与学(zxsxjyx)


编者按: 李邦河院士于 2009 年 4 月在中国数学会厦门学术年会上荣获“华罗庚数学奖”。


本文是李院士在这次年会上所做的公众报告,他在报告中谈到一个重要的思想: 数学玩的是概念,而不是纯粹的技巧。


因为中小学数学里面的概念比较少,所以就在一些难题、技巧上下功夫,这恰恰是舍本逐末的做法,值得所有的数学教育工作者深思。

非常感谢市科协和我们的校领导给我这个机会,在这里和同学们见面,一起交流一下对数学的看法。首先我的题目是数的概念的发展,我猜想,相当一部分同学对这个题目不感兴趣,原因就是大多数人在中学学习数学时,会认为数学重要的不是概念,重要的是解题,比如几何题要会画辅助线,还有数学竞赛中比较难的题目。

那么数的概念是什么呢,大家知道有理数啊,一看就知道了,绝大多数同学不会去记这个定义,什么是有理数的定义?几何的概念也不易被重视,因为什么是三角形,正方形,矩形,菱形,一看就知道。中学数学容易给人一种错觉,概念是不重要的,对于数学重要的是技巧。很多人上了大学,哪怕是到了数学系也抱着这种看法。

根据我上大学以后搞数学研究的经验, 数学根本上是玩概念的,不是玩技巧。

技巧不足道也!熟能生巧,数学竞赛的人都是要培训的,巧都是学来的。数学概念是人类智慧的结晶,首要表现在概念的形成。

我们现在觉得自然数 1,2,3,4 很自然,但人类发展历史中能认识“1”是非常不简单的。早期人们并不知道“1”,“1”是从大量的“一头牛、一头羊” 中抽象出来的。所以从哲学的观点去想,“1”是了不起的,而“0”更是了不起。中国古代没有 0 这个数字,用算筹表示数字,一根筷子是 1,两根筷子是 2,用空着的位置表示 0。但 0.101 怎么表示,我不知道。最早是印度数学家发明 0 的,认识到 0 也是个数,要用圈这个符号来表示,是很了不起的。负数更是了不起,西方认识到负数是非常晚的,大概十四五世纪。

欧洲数学中几何出现比较早,欧几里得几何是希腊时期,公元前二三百年就有几何,但没有负数实数概念。当时如果比出来不是有理数的话还不能接受,叫不可公度;负数的观念这时也没有。但我们中国在公元前二三百年就有了负数概念,西汉时期《九章算术》有解线性方程组的消去法的完整步骤,就出现负数。

中国古代对无理数的概念在理论上是没有的,但在实际上是有的,小数后面多少位都行。比如 这个数,祖冲之曾算到 3.1416,并知道可以无限往下算,这就有了无穷逼近的思想,极限的观念基本上有了,但是概念上并没有明确提出。无理数概念的明确提出是到了微积分的时期,这时才对实数做了一个完整的描述,由柯西序列的等价类来定义,这个时候实数理论才完备。

真正搞数学的人知道要弄清楚这个也并不容易,进入高等数学后概念比较多,对概念不重视的人,学多了就糊涂了。微积分的概念还不是很多,但学高等代数、线性代数里面就有很多概念,如果不重视基本概念,对于知识爆炸的大学数学,你是学不好的。微积分里最大值最小值,微分中值定理你有没有记得很清楚,会不会用,泰勒展开的麦克劳林余项,有没有记着?

要用基本的东西去解决问题,而不是玩技巧,可以说用到某个定理就是最大的技巧。

中学数学里概念就很少,只能出很难的题,来看谁的水平高。到大学里重要的则是基本概念,这个东西掌握得很透,才能达到高水平。到了研究生之后,基础数学里面的代数数论、代数拓扑、微分拓扑里头,概念更是爆炸,都很难理解,不下功夫是不行的,因为对象很复杂。我希望喜欢数学的人千万要重视基本概念,不仅要记住,还要通过具体的例子来深入地理解。

那么什么是概念呢?概念是一个抽象的东西,它包含了大量的具体的东西。一个概念越抽象涵盖的具体的事物越多,即外延越广。比如,刚刚讲的“1”这个例子,它可以涵盖一个苹果、一个梨、一头牛。自然数是数学里最简单的了,可见我们的起步就很抽象。

抽象和具体也是相对而言。1,2,3,4 等对于具体事情来说是抽象的,而对于我们数学来说,又没有比它更具体的。有理数比整数复杂了一点,无理数更复杂,它是无限不循环小数,但这对于我们搞数学的来说都很具体。我们每上一个台阶,以前抽象的东西就具体了。客观世界非常复杂,有时候你不得不抽象,否则描述不了。

有理数、无理数之后是复数,这时候已经到了高斯的时代,在牛顿、莱布尼兹之后的时代还接受不了。首先是, ,这个 ,开始大家都不承认它是数。高斯画出 轴, 轴,用 表示一个向量的时候,这就比较具体了,大家才觉得可以接受。接受之后,人们发现它很有用,有很多值得研究的,于是有了大量研究。

复变函数论中的留数定理,在计算定积分时将实数延拓到复平面上,就可以把原来在实轴上解决不了的定积分算出来,这对于热爱数学的人来说就会觉得太神奇了,这都归功于复数的概念。再发展到后来就是四元数,就是 ,但是

在中学时人们学交换律、分配律可能觉得毫无意思,因为感觉总是成立。可是这并不总是成立的,到四元数时乘法交换律便不成立了。然后到八元数,八元数就是八个实数形成的一个数,对八元数乘法结合律就不成立了。这个时候你才知道数的结合律有多宝贵,是多么好、多么可爱的性质。

四元数八元数还算具体的,到了大学里,大家还要学“抽象代数”,那个“数”就乱套了,任何对象都可以是数,这个数只要有个加法或乘法就够了。乘法满足结合律,有单位,有逆元素就叫群了。那里面的元素是不是数,都认为是一样的。整数在加法之下也构成加法群。所以,群的元素可以说是与整数、有理数是一样的,这就使我们从更广的概念理解什么叫数。

数学研究的东西,从大的方面来说,里面就有一对矛盾:一边是数,一边是形。形就是几何图形。最大的抽象逃不出数、形这两个东西。凡是可以进行代数运算的,比如群可以算,矩阵可以乘和加,都可以认为是数。而形就是几何图形,什么流形,地球,皮球,棱台,环面,三角形是形。三角形的边长呀,角呀,这是数。所以说,整个数学就是把形和数胶在一块,互相转化,互相表示。

数学基本的矛盾就是数和形的矛盾。有了抽象代数以后,我们的数的概念大大扩充了。对群感兴趣的人有物理学家、化学家、数学家。物理学家离不开群,比如到了原子物理,群就是物理学家的有力武器。这也是我们数学对其他学科的贡献。

比群复杂的有环、域还有代数,在抽象代数里都可以学到。域,加减乘除都有,最简单的域只有 0 和 1 两个元素,但是它有加减乘除,加法、乘法都满足交换结合,分配律。这些在中学数学里看起来不起眼的东西,使我们能够推广,推广之后使得两个元素便构成一个域。对任何一个质数 ,就构成一个域。这是非常有用的。

还有,比如 Clifford 代数,它是这样的, 加法是每个位置相加,现在要定义一个乘法,规律是

按照这个规律,定义了加法和乘法,这个加法满足交换律也满足结合律,乘法不满足交换律却满足结合律,分配律是成立的。这样定义的代数就叫 Clifford 代数,对于任何一个 ,都有一个。这个东西跟我们前面说的有什么关系呢?

=1 的时候的 Clifford 代数, 就是 ,这就是我们熟知的 ,所以这个时候 Clifford 代数就是复数域。然后, 时, ,Clifford 代数是四元数体。但是, 的时候,它是八维的,跟八元数不一样,它是可以结合的,而八元数是不可以结合的。八元数的特点是,每个不等于零的元素可逆,因此是可除代数。

那么可除代数是否只有一、二、四、八元数?有没有其它维的呢?当年的数学家,肯定对很多 都进行了试验,最后结果就没有发现别的。这是因为人们试验得不够,还是因为它事实上就没有呢?我们等会再说。

上世纪六十年代,引进了非标准分析,在非标准分析里面,有非标准分析的实数域,复数域。这些概念是数的概念重要的发展。

当年牛顿、莱布尼兹发明微积分时,是有无穷小的概念的想法的。牛顿的流数,一会是 0,一会不是 0,说不清楚,而莱布尼兹就说有种数叫无穷小,它比任何数都小。所以说当年发明人是使用了无穷小无穷大这个概念的,但是这个概念不严格。所以,后来数学发展中,就不采用无穷小概念了,用 δ 来代替。但是物理学家他们没有严格地用 δ ,他们就用无穷接近来表示极限,并且无穷小、无穷大的概念是经常用的,而两个概念是相对而言的。

当我们研究月亮绕地球运动的时候,用牛顿力学中的引力定律的时候,不就是把地球这么大的东西看成了一个点嘛。物理学家认为只要能解决问题就可以。但是数学家想在理论上完善它。到了上世纪六十年代,创立非标准分析的人发现,可以把牛顿莱布尼兹当年关于无穷小无穷大的想法严格化。当年是因为没有找到严格化的程序,所以不再采用这种概念。我认为,这也是数的概念发展中非常重要的事情。非标准分析中的实数域、复数域现在还没有被大家所普遍接受,但是我相信有一天会被大家接受的,就像复数的发展历程一样。

我现在要讲为什么只有一、二、四、八元数。我们要来证明。民间数学家中有人研究这个,我以前碰到一个人说他搞出来一个三元的,我告诉他不可能,这是为什么呢?

维欧氏空间 :其中 ,有内积 ,有长度 ,令 元数要求乘法满足, ,有单位元 。若 ,则 ,所以由 的映射是 的正交变换。因此 ,…, 是相互垂直的。







请到「今天看啥」查看全文


推荐文章
超级数学建模  ·  这玩意,我在高铁上被问了一路!
3 天前
超级数学建模  ·  如何评价辣妹儿?
4 天前
超级数学建模  ·  我把闲置导师出二手了
6 天前
超级数学建模  ·  三星堆的灭亡,竟是因为“谋反”?
4 天前
亿邦动力  ·  变化太大了,电商大佬们这十年
8 年前
总裁俱乐部  ·  要么忍,要么狠,要么滚~
8 年前
央视财经  ·  重磅!“习特会”时间地点确定!
7 年前
生物谷  ·  梳理苦瓜功能研究进展
7 年前