专栏名称: 学姐带你玩AI
这里有人工智能前沿信息、算法技术交流、机器学习/深度学习经验分享、AI大赛解析、大厂大咖算法面试分享、人工智能论文技巧、AI环境工具库教程等……学姐带你玩转AI!
目录
相关文章推荐
人民网舆情数据中心  ·  好利来表扬加班员工引争议,多次回应为何难平舆 ... ·  昨天  
人民网舆情数据中心  ·  《哪吒2》登顶全球动画电影票房榜、河北邢台立 ... ·  2 天前  
人民网舆情数据中心  ·  “必看”小程序:精准捕捉资讯脉搏,个性化信息 ... ·  2 天前  
人民网舆情数据中心  ·  铁路部门通报孕妇乘车被砸致胎儿早产去世事件详 ... ·  3 天前  
人民网舆情数据中心  ·  “AI公务员”上岗,分析DeepSeek对政 ... ·  3 天前  
51好读  ›  专栏  ›  学姐带你玩AI

注意力机制2024持续发力!多尺度卷积+Attention一举拿下高分!模型准确率几乎100%

学姐带你玩AI  · 公众号  ·  · 2024-10-18 18:06

正文

如何构建出更强大灵活的深度学习模型?或许我们可以考虑一个先进的方法: 多尺度卷积+注意力机制。

多尺度卷积先提供丰富的特征信息,注意力机制再从中筛选出关键信息,这样结合起来, 不仅可以进一步提高模型的识别精度和效率,显著提升模型性能,还可以增强模型的可解释性。 比如新型CNN架构MPARN,通过引入注意力机制,实现了最高99.49%的故障诊断准确率。

因此 这种结合在学术界与工业界都很热门 ,在图像分类、目标检测等任务中效果都特别好,创新空间很大。为帮助想发论文的同学,我挑选了 10篇 最新的多尺度卷积+注意力机制paper ,创新思路简单提炼了一下,方便大家找灵感。

扫码 添加小享, 回复“ 多尺度A

免费获取 全部论文+代码合集

MPARN: multi-scale path attention residual network for fault diagnosis of rotating machines

方法: 论文介绍了一种用于旋转机械故障诊断的多尺度卷积神经网络结构,称为多尺度路径注意力残差网络(MPARN)。这个结构通过结合多尺度卷积和注意力机制来提取不同时间尺度的特征,并增强特征的表示能力。

创新点:

  • 提出了一种新型的卷积神经网络架构,通过多尺度扩张卷积层后采用路径注意力模块,为不同卷积路径提取的特征分配不同的权重,以此增强多尺度结构的特征表示能力。
  • 在多尺度扩张卷积层之后引入了一种新的注意力机制,通过比较不同路径提取的通道之间的关系来计算每个卷积路径的权重,然后对通道进行加权,以突出重要路径的特征。

Multiscale attention networks for pavement defect detection

方法: 论文提出了一种多尺度移动注意力网络(MANet)自动检测和识别路面缺陷,弥补传统手动方法的不足,以移动网络为骨干结合多尺度卷积与混合注意力机制,显著提高特征提取能力和缺陷识别准确性。

创新点:

  • 引入多尺度卷积核替代传统的3×3卷积核,扩展网络的卷积感受野。
  • 在网络中结合混合注意力机制,增强空间点的重要性和通道间依赖性特征。
  • 针对样本不平衡问题,采用增强型焦点损失函数(EFL),提高了裂缝检测的准确性。
  • 提出了一种新颖的端到端网络架构MANet,用于检测路面缺陷。

扫码 添加小享, 回复“ 多尺度A

免费获取 全部论文+代码合集

AGGN: Attention-based glioma grading network with multi-scale feature extraction and multi-modal information fusion

方法: 作者结合了多尺度特征提取和注意力机制的方法,提高了模型在不同MRI模态下的特征提取能力和鲁棒性,以解决依赖手动标记数据的现有方法的不足,实现无需标签的有效胶质瘤分级。

创新点:

  • 提出了AGGN模型,该模型在不依赖手动标记肿瘤掩码的情况下,依然能够实现优异的分级性能。
  • 设计了双域注意力机制,能够同时考虑通道和空间信息,突出MRI特征图中的关键模态和位置。
  • 通过多尺度特征提取模块和多模态信息融合模块,AGGN能够综合分析脑部MRI,提取具有强表征能力的区分性特征。

Multi-scale attention network for single image super-resolution







请到「今天看啥」查看全文