特别的,对于Few-shot 3D point cloud semantic segmentation(FS-PCS)任务,模型的输入包括support point cloud以及关于新类别的标注(support mask)和query point cloud。模型需要通过
利用support point cloud和support mask获得关于新类别的知识并应用于分割query point cloud,预测出这些新类别的标签
。在模型训练和测试时使用的
目标类别无重合
,以保证测试时使用的类均为新类,未被模型在训练时见过。
[1] Lang, Chunbo, et al. "Progressive parsing and commonality distillation for few-shot remote sensing segmentation." IEEE Transactions on Geoscience and Remote Sensing (2023).
[2] Liu, Yuanwei, et al. "Intermediate prototype mining transformer for few-shot semantic segmentation." Advances in Neural Information Processing Systems 35 (2022): 38020-38031.
[3] Zhang, Canyu, et al. "Few-shot 3d point cloud semantic segmentation via stratified class-specific attention based transformer network." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 37. No. 3. 2023.
[4] Boudiaf, Malik, et al. "Few-shot segmentation without meta-learning: A good transductive inference is all you need?." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021.
[5] Wang, Jiahui, et al. "Few-shot point cloud semantic segmentation via contrastive self-supervision and multi-resolution attention." 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023.
[6] Lang, Chunbo, et al. "Learning what not to segment: A new perspective on few-shot segmentation." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.
[7] Sun, Yanpeng, et al. "Singular value fine-tuning: Few-shot segmentation requires few-parameters fine-tuning." Advances in Neural Information Processing Systems 35 (2022): 37484-37496.