Title
|
Proteomic and metabolomic features in patients with HCC responding to lenvatinib and anti-PD1 therapy
|
Online
|
https://www.cell.com/cell-reports/fulltext/S2211-1247(24)00205-5
|
研究背景
文章包括多种组学分析结果,我们重点关注的是基因组学的分析结果。
研究方法
-
患者和样本:人群队列或样本比较复杂,总共有4个队列:Main/ New/ Healthy/ Tissue。
-
Main:共有 51 例 HCC 患者接受了 Lenvatinib 和抗 PD1 抗体的联合治疗,26 例为应答者,取样 26 例治疗前血浆,10 例治疗后血浆样本。有 25 名无应答,取样 25 份治疗前血浆样本和 6 份治疗后血浆样本。
-
New:13例 uHCC 联合治疗前(基线)血浆样本,8 名有应答和 5 名无应答。
-
Healthy:另外有 15 人是健康对照的血浆样本。
-
40-HCC :采集了40份HCC患者组织样本。该队列包括 20 名无应答(手术切除后再免疫治疗)和 20 名(治疗后再进行手术切除)有应答。这些样本进行了whole genome mutation sequencing 基因组突变测序,Western blot,和蛋白质组学分析。我们重点关注这里的基因组突变测序结果。
-
40-HCC队列的测序策略:WES,使用QuarXeq Human All Exon Probes 3.0 和 QuarHyb One Reagent Kit 试剂盒进行外显子捕获和测序文库构建。使用华大的 DNBSEQ-T7测序仪,双端测序,读长为150 bp,测序深度是 145x~359x
-
数据处理:这里注意一下,方法部分没有指出如何 call somatic 突变,只是简单提到了 GATK ,没有提到对照样本。
研究结果
这里仅仅关心 40-HCC 队列的WES 结果:
文章评价
文章的 40 HCC 队列 WES 数据,有几个疑点:
-
1.
PSPC1 基因在所有样本中均有突变 100%,这是比较罕见的。
-
2.
在方法部分没有指出是如何 call 突变或者如何call somatic突变,只是简单提了一下 GATK 和 ANNOVAR 注释,且没有提到对照样本。
-
3.
top 突变基因除 TP53 外没有其他明显基因,类似 KRAS 、NRAS 、PIK3CA、PTEN、BRAF、ERBB2 等癌症明星突变基因都没有看到。这里可以和 TCGA HCC 队列的突变图谱简单比较一下:Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma
结果重现
以上两个大图都是该文章的 WES 突变图谱,如果想要重现,可以下载文件附件进行重现。这次重现数据来自于文章附件:https://www.cell.com/cms/10.1016/j.celrep.2024.113877/attachment/13e44277-8b84-4b92-8aaf-4eb427b3f6c4/mmc2.xlsx
临床信息
附件中的临床信息,是整理过后的临床三线表,无法获取每一个患者对应的临床信息如 sex/HBV_DNA/HBsAg/OS/Recurrence/Stage,只能获取到患者免疫治疗是否有应答的分组信息
# 清空环境并载入R包
rm
(list = ls())
library(maftools)
library(stringr)
library(ggpubr)
library(tidyr)
library(data.table)
library(pheatmap)
library(ggrepel)
library(ggsci)
library(ggplot2)
library(VennDiagram)
library(ggVennDiagram)
clinical = readxl::read_xlsx("mmc2.xlsx", sheet = 7,skip = 3
)[,c(1,2)]
clinical = as.data.frame(clinical)
colnames(clinical)[2] = "Response"
write.table(clinical, file = "clinical.txt",sep = "\t",quote = F,row.names = F)
Tumor
Sample
Barcode
|
Response
|
DY-TT-001
|
Nonresponder
|
DY-TT-002
|
Nonresponder
|
DY-TT-003
|
Nonresponder
|
DY-TT-004
|
Nonresponder
|
...
|
...
|
DY-TT-036
|
responder
|
DY-TT-037
|
responder
|
DY-TT-038
|
responder
|
DY-TT-039
|
responder
|
DY-TT-040
|
responder
|
突变结果
文章正文的 fig3 是突变结果,其中:(A)40-HCC 队列中鉴定出的不同类别突变的条形图和箱线图。(B)Ti 和 Tv 图,说明了 HCC 中 6 种 SNV 的分布。(C)Oncoplot 显示 40-HCC 队列的体细胞图谱
(D)40-HCC 队列的有无应答的患者的 TMB 与所有TCGA 队列的比较。(E)40-HCC 队列中有无应答的患者之间的 TMB 比较
(F)突变是否同时或互斥的显著性。(G)40-HCC 队列中 MUC16 和 NEFH 基因共生突变的条形图分析。
annovar = readxl::read_xlsx("mmc2.xlsx", sheet = 4,skip = 2)[,-2]
write.
table(annovar, file = "annovar.txt",sep = "\t",quote = F,row.names = F)
annovar_maf = annovarToMaf(annovar = "annovar.txt",
refBuild = 'hg19',
tsbCol = 'Sample code',
table = 'refGene')
annovar_maf = read.maf(annovar_maf, clinicalData = "clinical.txt")
# fig3A
plotmafSummary(maf = annovar_maf)
# fig3B
maf.titv = titv(maf = annovar_maf, plot = FALSE, useSyn =
TRUE)
plotTiTv(res = maf.titv)
# fig3C
oncoplot(maf = annovar_maf,
clinicalFeatures = "Response",
sortByAnnotation = T,
showTumorSampleBarcodes = T,
barcode_mar = 5,
gene_mar = 7,
top = 29
)
# fig3D
maf_re = subsetMaf(maf = annovar_maf,tsb = clinical[clinical$Response == "responder",
1])
maf_no = subsetMaf(maf = annovar_maf,tsb = clinical[clinical$Response != "responder",1])
tcgaCompare(maf = maf_re)
tcgaCompare(maf = maf_no)
# fig3E
tmb = tmb(annovar_maf,captureSize = 50,logScale = T)
tmb = merge(tmb,clinical)
ggplot(data=tmb,mapping = aes(x=Response, y=total,color=Response)) +
geom_boxplot() +
stat_boxplot
(geom = "errorbar",width=0.15)+
#geom_dotplot(binaxis='y', stackdir='center', dotsize=1,aes(fill = Response))+
geom_jitter(aes(shape=Response), position=position_jitter(0.1),size=5)+
theme_bw()+
geom_signif(comparisons = list(c("responder", "Nonresponder")),test = t.test,color="black")+
theme(text = element_text(size=18))
# fig3F
somaticInteractions(maf = annovar_maf, top = 25, pvalue = c(0.05, 0.01))
# fig3G
png(file = "fig3G.png",width = 900,height = 300)
oncoplot(maf = annovar_maf,
clinicalFeatures = "Response",
sortByAnnotation = T,
showTumorSampleBarcodes = F,
genes = c("MUC16","NEFH"),
drawColBar = F,
)
dev.off()
而附图中的 fig S2 也是突变信息,其中:(A)有无应答突变基因的差异及显著性
(B)有无应答突变基因的比例
(C)有无应答突变基因 ATM 和 OBSCN 的位点分布
(D)有无应答突变基因所在通路的比较
(E)有无应答 TP53 通路的比较
# fig S2A
pt.vs.rt <- mafCompare(m1 = maf_no, m2 = maf_re,
m1Name = 'nonresponder', m2Name = 'responder', minMut = 5)
forestPlot(mafCompareRes = pt.vs.rt, pVal = 0.05)
# fig S2B
genes = c("ATM","DNAH14","OBSCN","PRAG1","USP9Y",
"ZNF724","ZNF93","OTOGL","TASOR2","ANAPC1",
"BAZ2B","CEP350","CTNNA3","FBN2","KIF13B",
"KMT2B","RIF1","SDK2","UNC79","WNK2","ZNF680")
coBarplot(m1 = maf_no, m2 = maf_re,
m1Name = 'nonresponder', m2Name =
'responder',
genes = genes)
# fig S3C
lollipopPlot2(m1 = maf_no, m2 = maf_re,
gene = "ATM",
AACol1 = "aaChange", AACol2 = "aaChange",
m1_label = 'all', m2_label = 'all',labPosAngle = 90,
m1_name = 'nonresponder', m2_name = 'responder',
roundedRect = T,showDomainLabel = F)
lollipopPlot2(m1 = maf_no, m2 = maf_re,
gene = "OBSCN",
AACol1 = "aaChange", AACol2 = "aaChange",
m1_label = 'all', m2_label = 'all',labPosAngle = 90,
m1_name = 'nonresponder', m2_name = 'responder',
roundedRect = T,showDomainLabel = F)
# fig S4D
pathways