从工业、汽车、医疗设备到智能手机与平板电脑等日常消费性电子产品应用等各种技术,都能找得到电容式传感技术的踪迹。这项技术能够快速普及的主要原因,在于它能轻易地提升设备的使用者体验,让制造业者由传统开关转向更具吸引力的触控功能。
电容传感技术还有助于减少设备的机械元件数量,从而延长设备的使用寿命和缩小尺寸。这些特性的组合只要设计、校准和控制得当,就能让具有电容式传感功能的产品吸引力倍增。
电容传感技术也广泛用于触控按键和滑杆功能,特别是在消费性、商业和工业应用中非常普及,但最常见的目标应用还是触控板和触控屏幕。要设计出兼具低成本、反应灵敏以及节能的传感器,而且在多杂讯环境中能稳定工作,已是当今市场中的常规要求,然而对大多数工程师来说的确颇具挑战性。
这些挑战对于未来几年内将快速进展的物联网(IoT)和可穿戴技术尤其明显,消费者的期望是,这些设备就算无法提供比现有物联网设备更好的使用体验,至少也要保持同样水准。许多方法和设计在理想使用情境中的差异极大,因此工程师需要好好考量哪种电容传感方法对其应用来说最好。
触控板
针对使用者接口,最基本的触控传感应用就是大家耳熟能详的投射式电容触控技术(Projected Capacitive Touch;PCT)触控板。这些设计是由玻璃板之间导电材料层的行列矩阵所构成。在这个网格施加电压就会产生一个电场,该电场可在每个交叉点测得。当某个导电物体,例如人类手指接近和接触PCT面板时,就会改变接触点的电场,同时产生了电容差。
工程师可以采用两种方式实现PCT技术:自电容(self-capacitance)触控板与互电容(mutual capacitance)触控板。
自电容设计是在印刷电路板(PCB)上,由接地铜箔(ground pattern)围绕。PCB上的每个传感器会与周围的接地铜箔以及传感器顶部的电场线路形成寄生电容。当手指靠近时会导入额外的电容,导致电场扭曲。这种设计的主要缺点在于一次只能检测到一次触控,因此,它虽然是颇具经济效益的模型,但只适用于屏幕后方空间有限的设备。
然而,互电容传感方法(mutual capacitance sensing;指任两个具有电荷的物体之间存在的电容)能实现多点触控检测,非常适合配备大型显示器的复杂设备设计。当手指触控的时候,两物体之间的互电容会减少,触控控制器由于检测到这个改变而识别到手指的存在。最重要的是,每个交叉点都各有独特的互电容,可以独立追踪。
对于互电容触控板来说,手指的存在会导致电容减小。相反地,在自电容触控板,手指施加的额外电容会增加传感器所测量到的整体电容。
触控屏幕
多个电容式触控板可组合形成触控屏幕或触控面板,用于检测单片玻璃板上一个或多个手指的位置。这项技术已经广泛应用于手机、平板电脑以及高端可穿戴设备等空间有限的设备,并可区分为PCB、电容式和单层氧化铟锡(Indium Tin Oxide;ITO)触控面板等三大类应用。
PCB触控面板:低成本、低功耗,但制造难度高