量子计算机用表示一个0或一个1的态(类似普通计算机的比特)编码信息,但也能用多个0和1的无限可能组合编码信息。不过,众所周知,这些量子信息态非常脆弱,谷歌量子硬件部的物理学家Julian Kelly说,为了让量子计算机执行有用的计算,“你需要量子信息,你要保护它不受环境干扰,还要保护它不受我们的影响,因为我们会操纵它们。”
如果没有这种保护,量子计算就无从谈起。为此,理论学家从1995年开始设计各种巧妙方案,让一个信息量子比特分布到多个“物理”量子比特。由此得到的“逻辑量子比特”能抵抗噪音——至少理论上可以。对于这种被称为“量子纠错”的技术,如要在现实中运作,就必须证明这种将信息分布到多个量子比特的做法能稳健地降低错误率。
过去几年里,IBM和亚马逊AWS等多家公司以及学术团队证明,纠错能小幅提升精准度[2,3,4]。谷歌2023年初发表了用“悬铃木”(Sycamore)量子处理器的49个量子比特得到的结果[2],该处理器将每个物理量子比特编码在一个超导电路中。
谷歌的新芯片名为Willow,是该技术的一个更大、更先进的版本,有105个物理量子比特。该芯片由谷歌2021年在加州圣塔芭芭拉的量子计算分部建造的一个制造实验室开发。
作为对Willow性能的首次演示,研究团队证明该芯片能在约5分钟内完成全球最大超级计算机需要1025年才能完成的任务,谷歌量子计算部门负责人Hartmut Neven说道。这是为证明量子计算机拥有超越经典计算机优越性的最近一次重大胜利。
而且,谷歌团队通过在Willow内部创建逻辑量子比特,证明了逻辑量子比特大小的每次递增都能将错误率减半。
“这是对完全低于阈值的一次令人印象深刻的演示。”荷兰代尔夫特理工大学量子纠错专家Barbara Terhal说道。哈佛大学物理学家Mikhail Lukin也表示,“这充分说明这个想法是行得通的。”