专栏名称: 机器学习研究组订阅
连接人工智能技术人才和产业人才的交流平台
目录
相关文章推荐
51好读  ›  专栏  ›  机器学习研究组订阅

新PyTorch API:几行代码实现不同注意力变体,兼具FlashAttention性能和PyTorch灵活性

机器学习研究组订阅  · 公众号  ·  · 2024-08-10 18:46

正文

用 FlexAttention 尝试一种新的注意力模式。


理论上,注意力机制就是你所需要的一切。然而在实际操作中,我们还需要优化像 FlashAttention 这样的注意力机制的实现。

尽管这些融合的注意力机制大大提高了性能,且支持长上下文,但这种效率的提升也伴随着灵活性的丧失。对于机器学习研究人员来说,这就像是一种「软件彩票」—— 如果你的注意力变体不适合现有的优化内核,你将面临运行缓慢和 CUDA 内存不足的困境。

一些注意力变体包括因果注意力、相对位置嵌入、Alibi、滑动窗口注意力、PrefixLM、文档掩码、不规则张量、PagedAttention 等。更糟糕的是,人们通常希望将这些变体组合在一起!比如滑动窗口注意力 + 文档掩码 + 因果注意力 + 上下文并行,又比如 PagedAttention + 滑动窗口的组合。

下图左侧代表了当今的现状 —— 一些掩码 + 偏置 + 设置的组合已经有现成的内核实现。然而,各种选项的添加会导致设置呈指数级增长。更糟糕的是,这种方式不会支持新的注意力变体。


为了彻底地解决这个超立方体问题,PyTorch 团队引入了 FlexAttention,一个新的 PyTorch API。

  1. FlexAttention 是一个灵活的 API,允许用户使用几行惯用的 PyTorch 代码就能实现多个注意力变体。
  2. 团队人员通过 torch.compile 将其降低到一个融合的 FlashAttention 内核中 ,生成了一个不会占用额外内存且性能可与手写内核相媲美的 FlashAttention 内核。
  3. 利用 PyTorch 的自动求导机制自动生成反向传播。
  4. 最后,PyTorch 团队还可以利用注意力掩码中的稀疏性,从而显著改善标准注意力实现。


FlashAttention 1-3 版本的参与者 Tri Dao 对这项研究进行了转发并评论:这项研究使得很多技术都融合在一起了。


FlexAttention

经典的注意力方程式如下:


代码形式:


FlexAttention 形式如下,其通过接受用户定义的函数 score_mod 来解决上述问题。

代码形式:


此函数允许用户在 softmax 之前修改注意力分数。研究人员发现,该函数最终足以满足大多数用户对注意力变体的需求。

具体而言,score_mod 如下:


要应用此函数,可以将其实现为:

for b in range (batch_size):    for h in range (num_heads):        for q_idx in range (sequence_length):            for kv_idx in range (sequence_length):                modified_scores [b, h, q_idx, kv_idx] = score_mod (scores [b, h, q_idx, kv_idx], b, h, q_idx, kv_idx)

最终的 API 具有令人惊讶的表达能力。

Score Mod 示例

全注意力

在这种情况下,score_mod 无操作,它接受分数作为输入,然后原样返回它们。


然后端到端的使用。


相对位置编码

一种常见的注意力变体是相对位置编码。相对位置编码不是对查询和键中的绝对距离进行编码,而是根据查询和键之间的距离调整分数。


需要注意的是,与典型实现不同,这不需要具体化 SxS 张量。相反,FlexAttention 会在内核中动态计算偏差值,从而显著提高内存和性能。


Soft-capping

Soft-capping 是 Gemma 2 和 Grok-1 使用的一种技术,在 FlexAttention 中,它的形式是这样的:


Causal Mask

尽管双向注意力很简单,但在论文《Attention is All You Need》,以及其他的 LLM 中,它们的设置都是仅解码器的注意力,其中每个 token 只能关注它之前的 token。如果用户使用 score_mod API ,可以将其表示为:


Sliding Window + Causal







请到「今天看啥」查看全文