xtcd test on variables residuals Panelvar: cn Timevar: datayear ------------------------------------------------------------------------------+ Variable | CD-test p-value average joint T | mean ρ mean abs(ρ) | ----------------+--------------------------------------+----------------------| residuals + 1.256 0.209 28.00 + 0.01 0.22 | ------------------------------------------------------------------------------+ Notes: Under the null hypothesis of cross-section independence, CD ~ N(0,1) P-values close to zero indicate data are correlated across panel groups.
通过上述结果可以发现,拟合效果良好,但 CD 检验 的
值仅为 20.9%,与实际值相比可能偏低。该数据集属于平衡面板,且 T=28 (年)。
. capture drop yhat . gen yhat = . . forval cn = 1/26 { 2. predict temp if cn ==`cn', eq(cn_`cn') 3. replace yhat = temp if cn == `cn' 4. drop temp 5. } . capture drop residuals_cs . gen residuals_cs = d.logreer - yhat . xtline d.logreer yhat
现在,这种模式似乎更适合一些国家,比如阿根廷和哥伦比亚。
正如论文 Identifying Exchange Rate Common Factors 中所阐述的观点,因为交易所中的某些共同因素对金融一体化的影响变得越来越大。
所以,本文再一次测试了残差的横截面相关性:
. xtcdf residuals_cs
xtcd test on variables residuals_cs Panelvar: cn Timevar: datayear ------------------------------------------------------------------------------+ Variable | CD-test p-value average joint T | mean ρ mean abs(ρ) | ----------------+--------------------------------------+----------------------| residuals_cs + .162 0.871 28.00 + 0.00 0.21 | ------------------------------------------------------------------------------+ Notes: Under the null hypothesis of cross-section independence, CD ~ N(0,1) P-values close to zero indicate data are correlated across panel groups.
Panel Variable (i): cn Number of obs = 728 Time Variable (t): datayear Number of groups = 26 Degrees of freedom per group: Obs per group: without cross-sectional avg. min = 24 min = 28 max = 24 avg = 28 with cross-sectional avg. min = 22 max = 28 max = 22 Number of F(106, 622) = 4.72 cross-sectional lags 0 to 0 Prob > F = 0.00 variables in mean group regression = 28 R-squared = 0.55 variables partialled out = 78 Adj. R-squared = 0.48 Root MSE = 0.07 ------------------------------------------------------------------------------- D.logreer| Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------------+--------------------------------------------------------------- Short Run Est.| ---------------+--------------------------------------------------------------- Mean Group: | D.logfeer| .1980608 .0541099 3.66 0.000 .0920074 .3041142 ---------------+--------------------------------------------------------------- Adjust. Term | ---------------+--------------------------------------------------------------- Pooled: | L.logreer| -.318621 .0932028 -3.42 0.001 -.5012951 -.1359469 ---------------+--------------------------------------------------------------- Long Run Est. | ---------------+--------------------------------------------------------------- Pooled: | logfeer| .579443 .2636656 2.20 0.028 .0626679 1.096218 -------------------------------------------------------------------------------
Panel Variable (i): cn Number of obs = 676 Time Variable (t): datayear Number of groups = 26 Degrees of freedom per group: Obs per group: without cross-sectional avg. min = 22 min = 26 max = 22 avg = 26 with cross-sectional avg. min = 16 max = 26 max = 16 Number of F(210, 466) = 1.70 cross-sectional lags 2 to 2 Prob > F = 0.00 variables in mean group regression = 28 R-squared = 0.57 variables partialled out = 182 Adj. R-squared = 0.37 Root MSE = 0.07 ------------------------------------------------------------------------------- D.logreer| Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------------+--------------------------------------------------------------- Short Run Est.| ---------------+--------------------------------------------------------------- Mean Group: | D.logfeer| .2203299 .0586742 3.76 0.000 .1053305 .3353293 ---------------+--------------------------------------------------------------- Adjust. Term | ---------------+--------------------------------------------------------------- Pooled: | L.logreer| -.2919711 .0964745 -3.03 0.002 -.4810577 -.1028846 ---------------+--------------------------------------------------------------- Long Run Est. | ---------------+--------------------------------------------------------------- Pooled: | logfeer| .6604173 .2884739 2.29 0.022 .0950189 1.225816 -------------------------------------------------------------------------------